Introduction to the Theory of Random Processes

Introduction to the Theory of Random Processes PDF Author: Nikolaĭ Vladimirovich Krylov
Publisher: American Mathematical Soc.
ISBN: 0821829858
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used forspectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining arepresentation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used toobtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Holder Spaces and Introduction to the Theoryof Diffusion Processes.

Introduction to the Theory of Random Processes

Introduction to the Theory of Random Processes PDF Author: Nikolaĭ Vladimirovich Krylov
Publisher: American Mathematical Soc.
ISBN: 0821829858
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used forspectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining arepresentation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used toobtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Holder Spaces and Introduction to the Theoryof Diffusion Processes.

Introduction to the Theory of Random Processes

Introduction to the Theory of Random Processes PDF Author: Iosif Il?ich Gikhman
Publisher: Courier Corporation
ISBN: 0486693872
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
Rigorous exposition suitable for elementary instruction. Covers measure theory, axiomatization of probability theory, processes with independent increments, Markov processes and limit theorems for random processes, more. A wealth of results, ideas, and techniques distinguish this text. Introduction. Bibliography. 1969 edition.

An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes PDF Author: D.J. Daley
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.

Theory of Probability and Random Processes

Theory of Probability and Random Processes PDF Author: Leonid Koralov
Publisher: Springer Science & Business Media
ISBN: 3540688293
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.

Exercise Solutions to Accompany Probability and Random Processes

Exercise Solutions to Accompany Probability and Random Processes PDF Author: Amedeo R. Odoni
Publisher:
ISBN: 9780070475670
Category :
Languages : en
Pages : 415

Get Book Here

Book Description


Probability and Random Processes

Probability and Random Processes PDF Author: Scott Miller
Publisher: Academic Press
ISBN: 0123869811
Category : Mathematics
Languages : en
Pages : 625

Get Book Here

Book Description
Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques.

Random Processes

Random Processes PDF Author: M. Rosenblatt
Publisher: Springer Science & Business Media
ISBN: 1461298520
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This text has as its object an introduction to elements of the theory of random processes. Strictly speaking, only a good background in the topics usually associated with a course in Advanced Calculus (see, for example, the text of Apostol [1]) and the elements of matrix algebra is required although additional background is always helpful. N onethe less a strong effort has been made to keep the required background on the level specified above. This means that a course based on this book would be appropriate for a beginning graduate student or an advanced undergraduate. Previous knowledge of probability theory is not required since the discussion starts with the basic notions of probability theory. Chapters II and III are concerned with discrete probability spaces and elements of the theory of Markov chains respectively. These two chapters thus deal with probability theory for finite or countable models. The object is to present some of the basic ideas and problems of the theory in a discrete context where difficulties of heavy technique and detailed measure theoretic discussions do not obscure the ideas and problems.

Probability, Random Variables, and Random Processes

Probability, Random Variables, and Random Processes PDF Author: John J. Shynk
Publisher: John Wiley & Sons
ISBN: 1118393953
Category : Computers
Languages : en
Pages : 850

Get Book Here

Book Description
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.

Introduction to Probability, Statistics, and Random Processes

Introduction to Probability, Statistics, and Random Processes PDF Author: Hossein Pishro-Nik
Publisher:
ISBN: 9780990637202
Category : Probabilities
Languages : en
Pages : 746

Get Book Here

Book Description
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.

Statistics of Random Processes II

Statistics of Random Processes II PDF Author: Robert Shevilevich Lipt︠s︡er
Publisher: Springer Science & Business Media
ISBN: 9783540639282
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW