Author: Eduard Tankard Browne
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages :
Book Description
Introduction to the Theory of Determinants and Matrices
Author: Eduard Tankard Browne
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages :
Book Description
Introduction to Modern Algebra and Matrix Theory
Author: Otto Schreier
Publisher: Courier Corporation
ISBN: 0486482200
Category : Mathematics
Languages : en
Pages : 402
Book Description
"This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--
Publisher: Courier Corporation
ISBN: 0486482200
Category : Mathematics
Languages : en
Pages : 402
Book Description
"This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--
Determinants and Matrices
Author: A. C. Aitken
Publisher: Read Books Ltd
ISBN: 1473347106
Category : Mathematics
Languages : en
Pages : 171
Book Description
This book contains a detailed guide to determinants and matrices in algebra. It offers an in-depth look into this area of mathematics, and it is highly recommended for those looking for an introduction to the subject. "Determinants and Matrices" is not to be missed by collectors of vintage mathematical literature. Contents include: "Linear Equations and Transformations", "The Notation of Matrices", "Matrices, Row and Column Vectors, Sealers", "The Operations of Matrix Algebra", "Matrix Pre- and Postmultiplication", "Product of Three or More Matrices", "Transposition of Rows and Columns", "Transpose of a Product: Reversal Rule", etc. Many vintage books such as this are becoming increasingly scarce and expensive. It is with this in mind that we are republishing this volume now in a modern, high-quality edition complete with the original text and artwork.
Publisher: Read Books Ltd
ISBN: 1473347106
Category : Mathematics
Languages : en
Pages : 171
Book Description
This book contains a detailed guide to determinants and matrices in algebra. It offers an in-depth look into this area of mathematics, and it is highly recommended for those looking for an introduction to the subject. "Determinants and Matrices" is not to be missed by collectors of vintage mathematical literature. Contents include: "Linear Equations and Transformations", "The Notation of Matrices", "Matrices, Row and Column Vectors, Sealers", "The Operations of Matrix Algebra", "Matrix Pre- and Postmultiplication", "Product of Three or More Matrices", "Transposition of Rows and Columns", "Transpose of a Product: Reversal Rule", etc. Many vintage books such as this are becoming increasingly scarce and expensive. It is with this in mind that we are republishing this volume now in a modern, high-quality edition complete with the original text and artwork.
Algebra: A Very Short Introduction
Author: Peter M. Higgins
Publisher: OUP Oxford
ISBN: 0191047465
Category : Mathematics
Languages : en
Pages : 161
Book Description
Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191047465
Category : Mathematics
Languages : en
Pages : 161
Book Description
Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Matrix Theory
Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Vector Spaces and Matrices
Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Linear Algebra and Matrix Theory
Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
The Theory of Matrices
Author: Feliks Ruvimovich Gantmakher
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Groups, Matrices, and Vector Spaces
Author: James B. Carrell
Publisher: Springer
ISBN: 038779428X
Category : Mathematics
Languages : en
Pages : 415
Book Description
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.
Publisher: Springer
ISBN: 038779428X
Category : Mathematics
Languages : en
Pages : 415
Book Description
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.