Author: Luca Incurvati
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Conceptions of Set and the Foundations of Mathematics
Author: Luca Incurvati
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Introduction to the Foundations of Mathematics
Author: Raymond L. Wilder
Publisher: Courier Corporation
ISBN: 0486276201
Category : Mathematics
Languages : en
Pages : 354
Book Description
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
Publisher: Courier Corporation
ISBN: 0486276201
Category : Mathematics
Languages : en
Pages : 354
Book Description
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
New Foundations in Mathematics
Author: Garret Sobczyk
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Evolution of Mathematical Concepts
Author: Raymond L. Wilder
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Logical Foundations of Mathematics and Computational Complexity
Author: Pavel Pudlák
Publisher: Springer Science & Business Media
ISBN: 3319001191
Category : Mathematics
Languages : en
Pages : 699
Book Description
The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.
Publisher: Springer Science & Business Media
ISBN: 3319001191
Category : Mathematics
Languages : en
Pages : 699
Book Description
The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.
An Introduction to Mathematics
Author: Alfred North Whitehead
Publisher: Courier Dover Publications
ISBN: 0486821382
Category : Mathematics
Languages : en
Pages : 177
Book Description
Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.
Publisher: Courier Dover Publications
ISBN: 0486821382
Category : Mathematics
Languages : en
Pages : 177
Book Description
Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.
Introduction to the Foundations of Applied Mathematics
Author: Mark H. Holmes
Publisher: Springer Science & Business Media
ISBN: 0387877657
Category : Mathematics
Languages : en
Pages : 477
Book Description
FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.
Publisher: Springer Science & Business Media
ISBN: 0387877657
Category : Mathematics
Languages : en
Pages : 477
Book Description
FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.
Introduction to Cryptography with Mathematical Foundations and Computer Implementations
Author: Alexander Stanoyevitch
Publisher: CRC Press
ISBN: 1439817634
Category : Computers
Languages : en
Pages : 646
Book Description
From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.
Publisher: CRC Press
ISBN: 1439817634
Category : Computers
Languages : en
Pages : 646
Book Description
From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.