An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Introduction to Stochastic Models

Introduction to Stochastic Models PDF Author: Roe Goodman
Publisher: Courier Corporation
ISBN: 0486450376
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Newly revised by the author, this undergraduate-level text introduces the mathematical theory of probability and stochastic processes. Using both computer simulations and mathematical models of random events, it comprises numerous applications to the physical and biological sciences, engineering, and computer science. Subjects include sample spaces, probabilities distributions and expectations of random variables, conditional expectations, Markov chains, and the Poisson process. Additional topics encompass continuous-time stochastic processes, birth and death processes, steady-state probabilities, general queuing systems, and renewal processes. Each section features worked examples, and exercises appear at the end of each chapter, with numerical solutions at the back of the book. Suggestions for further reading in stochastic processes, simulation, and various applications also appear at the end.

Introduction to Stochastic Processes with R

Introduction to Stochastic Processes with R PDF Author: Robert P. Dobrow
Publisher: John Wiley & Sons
ISBN: 1118740653
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

Introduction to Stochastic Networks

Introduction to Stochastic Networks PDF Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 1461214823
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
Beginning with Jackson networks and ending with spatial queuing systems, this book describes several basic stochastic network processes, with the focus on network processes that have tractable expressions for the equilibrium probability distribution of the numbers of units at the stations. Intended for graduate students and researchers in engineering, science and mathematics interested in the basics of stochastic networks that have been developed over the last twenty years, the text assumes a graduate course in stochastic processes without measure theory, emphasising multi-dimensional Markov processes. Alongside self-contained material on point processes involving real analysis, the book also contains complete introductions to reversible Markov processes, Palm probabilities for stationary systems, Little laws for queuing systems and space-time Poisson processes.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes PDF Author: Andreas Diekmann
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description


Stochastic Modeling

Stochastic Modeling PDF Author: Nicolas Lanchier
Publisher: Springer
ISBN: 3319500384
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.

Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems PDF Author: V. G. Kulkarni
Publisher: Springer
ISBN: 1441917721
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.

Stochastic Modelling of Reaction–Diffusion Processes

Stochastic Modelling of Reaction–Diffusion Processes PDF Author: Radek Erban
Publisher: Cambridge University Press
ISBN: 1108572995
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Introduction to Stochastic Processes

Introduction to Stochastic Processes PDF Author: Erhan Cinlar
Publisher: Courier Corporation
ISBN: 0486276325
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Optimization of Stochastic Models

Optimization of Stochastic Models PDF Author: Georg Ch. Pflug
Publisher: Springer Science & Business Media
ISBN: 1461314496
Category : Business & Economics
Languages : en
Pages : 384

Get Book Here

Book Description
Stochastic models are everywhere. In manufacturing, queuing models are used for modeling production processes, realistic inventory models are stochastic in nature. Stochastic models are considered in transportation and communication. Marketing models use stochastic descriptions of the demands and buyer's behaviors. In finance, market prices and exchange rates are assumed to be certain stochastic processes, and insurance claims appear at random times with random amounts. To each decision problem, a cost function is associated. Costs may be direct or indirect, like loss of time, quality deterioration, loss in production or dissatisfaction of customers. In decision making under uncertainty, the goal is to minimize the expected costs. However, in practically all realistic models, the calculation of the expected costs is impossible due to the model complexity. Simulation is the only practicable way of getting insight into such models. Thus, the problem of optimal decisions can be seen as getting simulation and optimization effectively combined. The field is quite new and yet the number of publications is enormous. This book does not even try to touch all work done in this area. Instead, many concepts are presented and treated with mathematical rigor and necessary conditions for the correctness of various approaches are stated. Optimization of Stochastic Models: The Interface Between Simulation and Optimization is suitable as a text for a graduate level course on Stochastic Models or as a secondary text for a graduate level course in Operations Research.