Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control PDF Author: Dharmaraja Selvamuthu
Publisher: Springer
ISBN: 9811317364
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control PDF Author: Dharmaraja Selvamuthu
Publisher: Springer
ISBN: 9811317364
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control PDF Author: Dharmaraja Selvamuthu
Publisher:
ISBN: 9789811317378
Category : Mathematical statistics
Languages : en
Pages :

Get Book Here

Book Description
This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2-6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7-9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.

Introduction to Engineering Statistics and Lean Sigma

Introduction to Engineering Statistics and Lean Sigma PDF Author: Theodore T. Allen
Publisher: Springer Science & Business Media
ISBN: 1849960003
Category : Technology & Engineering
Languages : en
Pages : 573

Get Book Here

Book Description
Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.

Introduction to Statistical Quality Control

Introduction to Statistical Quality Control PDF Author: Douglas C. Montgomery
Publisher: John Wiley & Sons
ISBN: 1119657075
Category : Process control
Languages : en
Pages : 772

Get Book Here

Book Description
"This book is about the use of modern statistical methods for quality control and improvement. It provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts. and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of situations. Although statistical techniques are emphasized. throughout, the book has a strong engineering and management orientation. Extensive knowledge. of statistics is not a prerequisite for using this book. Readers whose background includes a basic course in statistical methods will find much of the material in this book easily accessible"--

Introduction to Statistical Quality Control

Introduction to Statistical Quality Control PDF Author: Christina M. Mastrangelo
Publisher: Wiley
ISBN:
Category : Business & Economics
Languages : en
Pages : 244

Get Book Here

Book Description
Revised and expanded, this Second Edition continues to explore the modern practice of statistical quality control, providing comprehensive coverage of the subject from basic principles to state-of-the-art concepts and applications. The objective is to give the reader a thorough grounding in the principles of statistical quality control and a basis for applying those principles in a wide variety of both product and nonproduct situations. Divided into four parts, it contains numerous changes, including a more detailed discussion of the basic SPC problem-solving tools and two new case studies, expanded treatment on variable control charts with new examples, a chapter devoted entirely to cumulative-sum control charts and exponentially-weighted, moving-average control charts, and a new section on process improvement with designed experiments.

Statistical Quality Design and Control

Statistical Quality Design and Control PDF Author: Richard E. DeVor
Publisher: Pearson
ISBN:
Category : Business & Economics
Languages : en
Pages : 968

Get Book Here

Book Description
Emphasizing proper methods for data collection, control chart construction and interpretation, and fault diagnosis for process improvement, this text blends statistical process control (SPC) and design of experiments (DOE) concepts and methods for quality design and improvement. Importance is placed on both the philosophical/conceptual underpinnings and the techniques and methods of SPC and DOE. The concepts and methods of Taguchi for quality design are combined with more traditional experimental design methods to promote the importance of viewing quality from an engineering design perspective.

Design of Experiments for Engineers and Scientists

Design of Experiments for Engineers and Scientists PDF Author: Jiju Antony
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book Here

Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry

Statistical Methods for Quality Improvement

Statistical Methods for Quality Improvement PDF Author: Thomas P. Ryan
Publisher: John Wiley & Sons
ISBN: 1118058100
Category : Technology & Engineering
Languages : en
Pages : 578

Get Book Here

Book Description
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.

Statistical Methods for Quality Assurance

Statistical Methods for Quality Assurance PDF Author: Stephen B. Vardeman
Publisher: Springer
ISBN: 038779106X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the streamlined approach of the text and extensive supporting material facilitate reader understanding. Second Edition Improvements Extensive coverage of measurement quality evaluation (in addition to ANOVA Gauge R&R methodologies) New end-of-section exercises and revised-end-of-chapter exercises Two full sets of slides, one with audio to assist student preparation outside-of-class and another appropriate for professors’ lectures Substantial supporting material Supporting Material Seven R programs that support variables and attributes control chart construction and analyses, Gauge R&R methods, analyses of Fractional Factorial studies, Propagation of Error analyses and Response Surface analyses Documentation for the R programs Excel data files associated with the end-of-chapter problem sets, most from real engineering settings

Statistical Design of Experiments with Engineering Applications

Statistical Design of Experiments with Engineering Applications PDF Author: Kamel Rekab
Publisher: CRC Press
ISBN: 142005631X
Category : Business & Economics
Languages : en
Pages : 253

Get Book Here

Book Description
In today's high-technology world, with flourishing e-business and intense competition at a global level, the search for the competitive advantage has become a crucial task of corporate executives. Quality, formerly considered a secondary expense, is now universally recognized as a necessary tool. Although many statistical methods are available for