Author: Ligia Munteanu
Publisher: Springer Science & Business Media
ISBN: 1402025777
Category : Mathematics
Languages : en
Pages : 325
Book Description
This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.
Introduction to Soliton Theory: Applications to Mechanics
Author: Ligia Munteanu
Publisher: Springer Science & Business Media
ISBN: 1402025777
Category : Mathematics
Languages : en
Pages : 325
Book Description
This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.
Publisher: Springer Science & Business Media
ISBN: 1402025777
Category : Mathematics
Languages : en
Pages : 325
Book Description
This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.
Soliton Theory and Its Applications
Author: Chaohao Gu
Publisher: Springer Science & Business Media
ISBN: 3662031027
Category : Mathematics
Languages : en
Pages : 414
Book Description
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
Publisher: Springer Science & Business Media
ISBN: 3662031027
Category : Mathematics
Languages : en
Pages : 414
Book Description
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
Solitons
Author: P. G. Drazin
Publisher: Cambridge University Press
ISBN: 9780521336550
Category : Mathematics
Languages : en
Pages : 244
Book Description
This textbook is an introduction to the theory of solitons in the physical sciences.
Publisher: Cambridge University Press
ISBN: 9780521336550
Category : Mathematics
Languages : en
Pages : 244
Book Description
This textbook is an introduction to the theory of solitons in the physical sciences.
Glimpses of Soliton Theory
Author: Alex Kasman
Publisher: American Mathematical Soc.
ISBN: 0821852450
Category : Mathematics
Languages : en
Pages : 322
Book Description
Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --
Publisher: American Mathematical Soc.
ISBN: 0821852450
Category : Mathematics
Languages : en
Pages : 322
Book Description
Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --
Basic Methods Of Soliton Theory
Author: Ivan V Cherednik
Publisher: World Scientific
ISBN: 9814499005
Category : Science
Languages : en
Pages : 264
Book Description
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of “integrability” and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local conservation laws, Bäcklund-Darboux transforms), algebraic geometry (theta and Baker functions), and the inverse scattering method (Riemann-Hilbert problem) with well-grounded preliminaries are applied to various equations including principal chiral fields, Heisenberg magnets, Sin-Gordon, and Nonlinear Schrödinger equation.
Publisher: World Scientific
ISBN: 9814499005
Category : Science
Languages : en
Pages : 264
Book Description
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of “integrability” and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local conservation laws, Bäcklund-Darboux transforms), algebraic geometry (theta and Baker functions), and the inverse scattering method (Riemann-Hilbert problem) with well-grounded preliminaries are applied to various equations including principal chiral fields, Heisenberg magnets, Sin-Gordon, and Nonlinear Schrödinger equation.
The Versatile Soliton
Author: Alexandre T. Filippov
Publisher: Springer Science & Business Media
ISBN: 9780817636357
Category : Mathematics
Languages : en
Pages : 282
Book Description
In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times with its recent applications.
Publisher: Springer Science & Business Media
ISBN: 9780817636357
Category : Mathematics
Languages : en
Pages : 282
Book Description
In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times with its recent applications.
Hamiltonian Methods in the Theory of Solitons
Author: Ludwig Faddeev
Publisher: Springer Science & Business Media
ISBN: 3540699694
Category : Science
Languages : en
Pages : 602
Book Description
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Publisher: Springer Science & Business Media
ISBN: 3540699694
Category : Science
Languages : en
Pages : 602
Book Description
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
A Modern Introduction to the Mathematical Theory of Water Waves
Author: Robin Stanley Johnson
Publisher: Cambridge University Press
ISBN: 9780521598323
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text considers classical and modern problems in linear and non-linear water-wave theory.
Publisher: Cambridge University Press
ISBN: 9780521598323
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text considers classical and modern problems in linear and non-linear water-wave theory.
Solitary Waves in Fluids
Author: R. Grimshaw
Publisher: WIT Press
ISBN: 1845641574
Category : Science
Languages : en
Pages : 209
Book Description
Edited by R.H.J. Grimshaw, this book covers the topic of solitary waves in fluids.
Publisher: WIT Press
ISBN: 1845641574
Category : Science
Languages : en
Pages : 209
Book Description
Edited by R.H.J. Grimshaw, this book covers the topic of solitary waves in fluids.
Bäcklund and Darboux Transformations
Author: C. Rogers
Publisher: Cambridge University Press
ISBN: 9780521012881
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book explores the deep and fascinating connections that exist between a ubiquitous class of physically important waves known as solitons and the theory of transformations of a privileged class of surfaces as they were studied by eminent geometers of the nineteenth century. Thus, nonlinear equations governing soliton propagation and also mathematical descriptions of their remarkable interaction properties are shown to arise naturally out of the classical differential geometry of surfaces and what are termed Bäcklund-Darboux transformations.This text, the first of its kind, is written in a straightforward manner and is punctuated by exercises to test the understanding of the reader. It is suitable for use in higher undergraduate or graduate level courses directed at applied mathematicians or mathematical physics.
Publisher: Cambridge University Press
ISBN: 9780521012881
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book explores the deep and fascinating connections that exist between a ubiquitous class of physically important waves known as solitons and the theory of transformations of a privileged class of surfaces as they were studied by eminent geometers of the nineteenth century. Thus, nonlinear equations governing soliton propagation and also mathematical descriptions of their remarkable interaction properties are shown to arise naturally out of the classical differential geometry of surfaces and what are termed Bäcklund-Darboux transformations.This text, the first of its kind, is written in a straightforward manner and is punctuated by exercises to test the understanding of the reader. It is suitable for use in higher undergraduate or graduate level courses directed at applied mathematicians or mathematical physics.