Introduction to R in IBM SPSS Modeler

Introduction to R in IBM SPSS Modeler PDF Author: Wannes Rosius
Publisher: IBM Redbooks
ISBN: 0738455601
Category : Computers
Languages : en
Pages : 54

Get Book Here

Book Description
This IBM RedpaperTM publication focuses on the integration between IBM® SPSS® Modeler and R. The paper is aimed at people who know IBM SPSS Modeler and have only a very limited knowledge of R. Chapters 2, 3, and 4 provide you with a high level understanding of R integration within SPSS Modeler enabling you to create or recreate some very basic R models within SPSS Modeler, even if you have only a basic knowledge of R. Chapter 5 provides more detailed tips and tricks. This chapter is for the experienced user and consists of items that might help you get up to speed with more detailed functions of the integration and understand some pitfalls.

Introduction to R in IBM SPSS Modeler

Introduction to R in IBM SPSS Modeler PDF Author: Wannes Rosius
Publisher: IBM Redbooks
ISBN: 0738455601
Category : Computers
Languages : en
Pages : 54

Get Book Here

Book Description
This IBM RedpaperTM publication focuses on the integration between IBM® SPSS® Modeler and R. The paper is aimed at people who know IBM SPSS Modeler and have only a very limited knowledge of R. Chapters 2, 3, and 4 provide you with a high level understanding of R integration within SPSS Modeler enabling you to create or recreate some very basic R models within SPSS Modeler, even if you have only a basic knowledge of R. Chapter 5 provides more detailed tips and tricks. This chapter is for the experienced user and consists of items that might help you get up to speed with more detailed functions of the integration and understand some pitfalls.

Practical Statistics

Practical Statistics PDF Author: David Kremelberg
Publisher: SAGE Publications
ISBN: 150631791X
Category : Social Science
Languages : en
Pages : 529

Get Book Here

Book Description
Making statistics—and statistical software—accessible and rewarding This book provides readers with step-by-step guidance on running a wide variety of statistical analyses in IBM® SPSS® Statistics, Stata, and other programs. Author David Kremelberg begins his user-friendly text by covering charts and graphs through regression, time-series analysis, and factor analysis. He provides a background of the method, then explains how to run these tests in IBM SPSS and Stata. He then progresses to more advanced kinds of statistics such as HLM and SEM, where he describes the tests and explains how to run these tests in their appropriate software including HLM and AMOS. This is an invaluable guide for upper-level undergraduate and graduate students across the social and behavioral sciences who need assistance in understanding the various statistical packages.

Introduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos

Introduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos PDF Author: Niels Blunch
Publisher: SAGE
ISBN: 1446271846
Category : Reference
Languages : en
Pages : 314

Get Book Here

Book Description
This comprehensive Second Edition offers readers a complete guide to carrying out research projects involving structural equation modeling (SEM). Updated to include extensive analysis of AMOS′ graphical interface, a new chapter on latent curve models and detailed explanations of the structural equation modeling process, this second edition is the ideal guide for those new to the field. The book includes: Learning objectives, key concepts and questions for further discussion in each chapter. Helpful diagrams and screenshots to expand on concepts covered in the texts. Real life examples from a variety of disciplines to show how SEM is applied in real research contexts. Exercises for each chapter on an accompanying companion website. A new glossary. Assuming no previous experience of the subject, and a minimum of mathematical knowledge, this is the ideal guide for those new to SEM and an invaluable companion for students taking introductory SEM courses in any discipline. Niels J. Blunch was formerly in the Department of Marketing and Statistics at the University of Aarhus, Denmark

IBM SPSS Modeler Essentials

IBM SPSS Modeler Essentials PDF Author: Keith McCormick
Publisher: Packt Publishing Ltd
ISBN: 1788296826
Category : Computers
Languages : en
Pages : 231

Get Book Here

Book Description
Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler About This Book Get up–and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Who This Book Is For This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book. What You Will Learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions In Detail IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. Style and approach This book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.

Our Experience Converting an IBM Forecasting Solution from R to IBM SPSS Modeler

Our Experience Converting an IBM Forecasting Solution from R to IBM SPSS Modeler PDF Author: Pitipong JS Lin
Publisher: IBM Redbooks
ISBN: 0738454141
Category : Computers
Languages : en
Pages : 82

Get Book Here

Book Description
This IBM® RedpaperTM publication presents the process and steps that were taken to move from an R language forecasting solution to an IBM SPSS® Modeler solution. The paper identifies the key challenges that the team faced and the lessons they learned. It describes the journey from analysis through design to key actions that were taken during development to make the conversion successful. The solution approach is described in detail so that you can learn how the team broke the original R solution architecture into logical components in order to plan for the conversion project. You see key aspects of the conversion from R to IBM SPSS Modeler and how basic parts, such as data preparation, verification, pre-screening, and automating data quality checks, are accomplished. The paper consists of three chapters: Chapter 1 introduces the business background and the problem domain. Chapter 2 explains critical technical challenges that the team confronted and solved. Chapter 3 focuses on lessons that were learned during this process and ideas that might apply to your conversion project. This paper applies to various audiences: Decision makers and IT Architects who focus on the architecture, roadmap, software platform, and total cost of ownership. Solution development team members who are involved in creating statistical/analytics-based solutions and who are familiar with R and IBM SPSS Modeler.

Multilevel and Longitudinal Modeling with IBM SPSS

Multilevel and Longitudinal Modeling with IBM SPSS PDF Author: Ronald H. Heck
Publisher: Routledge
ISBN: 1135074240
Category : Psychology
Languages : en
Pages : 753

Get Book Here

Book Description
This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.

Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R

Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R PDF Author: Joseph F. Hair Jr.
Publisher: Springer Nature
ISBN: 3030805190
Category : Business & Economics
Languages : en
Pages : 208

Get Book Here

Book Description
Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.

Data Mining with SPSS Modeler

Data Mining with SPSS Modeler PDF Author: Tilo Wendler
Publisher: Springer
ISBN: 3319287095
Category : Mathematics
Languages : en
Pages : 1068

Get Book Here

Book Description
Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.

Interpreting Quantitative Data with SPSS

Interpreting Quantitative Data with SPSS PDF Author: Rachad Antonius
Publisher: SAGE
ISBN: 9780761973997
Category : Social Science
Languages : en
Pages : 336

Get Book Here

Book Description
This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied.

A Step-by-Step Guide to Applying the Rasch Model Using R

A Step-by-Step Guide to Applying the Rasch Model Using R PDF Author: Iasonas Lamprianou
Publisher: Taylor & Francis
ISBN: 1040259162
Category : Psychology
Languages : en
Pages : 321

Get Book Here

Book Description
This new edition provides a step-by-step guide to applying the Rasch model in R, a probabilistic model used by researchers across the social sciences to measure unobservable (“latent”) variables. Although the focus is on simple R code, the book provides updated guidance through the point-and-click menus of BlueSky Statistics software. The book covers all Rasch models frequently used in social sciences, from the Simple Rasch model to the Rating Scale, Partial Credit, and Many-Facets Rasch models. Using a pragmatic approach to model-data fit, this book offers helpful practical examples to investigate Rasch model assumptions. In addition to traditional Rasch model approaches, it introduces the Rasch model as a special case of a Generalized Mixed Effects Model. Readers will also benefit from the online support material which includes all the code used in the book in downloadable and useable files. It also provides a comprehensive guide to R programming and practical guidance on using BlueSky Statistics software's point-and-click menus. This dual approach enables readers to experiment with data analysis using the provided data sets, enhancing their understanding and application of statistical concepts. It will be a valuable resource for both students and researchers who want to use Rasch models in their research.