Introduction to Quantitative Cell Biology

Introduction to Quantitative Cell Biology PDF Author: Wallace F. Marshall
Publisher: Biota Publishing
ISBN: 1615046690
Category : Science
Languages : en
Pages : 60

Get Book Here

Book Description
For the past decade or more, much of cell biology research has been focused on determining the key molecules involved in different cellular processes, an analytical problem that has been amenable to biochemical and genetic approaches. Now, we face an integrative problem of understanding how all of these molecules work together to produce living cells, a challenge that requires using quantitative approaches to model the complex interactions within a cell, and testing those models with careful quantitative measurements. This book is an introductory overview of the various approaches, methods, techniques, and models employed in quantitative cell biology, which are reviewed in greater detail in the other volumes in this e-book series. Particular emphasis is placed on the goals and purpose of quantitative analysis and modeling, and the special challenges that cell biology holds for understanding life at the physical level.

Introduction to Quantitative Cell Biology

Introduction to Quantitative Cell Biology PDF Author: Wallace F. Marshall
Publisher: Biota Publishing
ISBN: 1615046690
Category : Science
Languages : en
Pages : 60

Get Book Here

Book Description
For the past decade or more, much of cell biology research has been focused on determining the key molecules involved in different cellular processes, an analytical problem that has been amenable to biochemical and genetic approaches. Now, we face an integrative problem of understanding how all of these molecules work together to produce living cells, a challenge that requires using quantitative approaches to model the complex interactions within a cell, and testing those models with careful quantitative measurements. This book is an introductory overview of the various approaches, methods, techniques, and models employed in quantitative cell biology, which are reviewed in greater detail in the other volumes in this e-book series. Particular emphasis is placed on the goals and purpose of quantitative analysis and modeling, and the special challenges that cell biology holds for understanding life at the physical level.

Cell Biology by the Numbers

Cell Biology by the Numbers PDF Author: Ron Milo
Publisher: Garland Science
ISBN: 1317230698
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid

Quantitative Imaging in Cell Biology

Quantitative Imaging in Cell Biology PDF Author:
Publisher: Academic Press
ISBN: 0124202012
Category : Science
Languages : en
Pages : 609

Get Book Here

Book Description
This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. Covers sections on model systems and functional studies, imaging-based approaches and emerging studies Chapters are written by experts in the field Cutting-edge material

Quantitative Biology

Quantitative Biology PDF Author: Akatsuki Kimura
Publisher:
ISBN: 9789811650192
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This textbook is for biologists, to conduct quantitative analysis and modeling of biological processes at molecular and cellular levels. Focusing on practical concepts and techniques for everyday research, this text will enable beginners, both students and established biologists, to take the first step in quantitative biology. It also provides step-by-step tutorials to run various sample programs in one's personal computer using Excel and Python. This volume traces topics, starting with an introductory chapter, such as modeling, construction and execution of numerical models, and key concepts in quantitative biology: feedback regulations, fluctuations and randomness, and statistical analyses. It also provide sample codes with guidance to procedure programming for actual biological processes such as movement of the nucleus within a cell, cell-cycle regulation, stripe pattern formation of skins, and distribution of energy. Written by a leading research scientist who has a background in biology, studied quantitative approaches by himself, and teaches quantitative biology at several universities, this textbook broadens quantitative approaches for biologists who do not have a strong background in mathematics, physics, or computer programming, and helps them progress further in their research.

Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology PDF Author: Brian P. Ingalls
Publisher: MIT Press
ISBN: 0262545829
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Quantitative Biology: Dynamics of Living Systems

Quantitative Biology: Dynamics of Living Systems PDF Author: Noriko Hiroi
Publisher: Frontiers Media SA
ISBN: 2889452131
Category :
Languages : en
Pages : 138

Get Book Here

Book Description
With the emergence of Systems Biology, there is a greater realization that the whole behavior of a living system may not be simply described as the sum of its elements. To represent a living system using mathematical principles, practical quantities with units are required. Quantities are not only the bridge between mathematical description and biological observations; they often stand as essential elements similar to genome information in genetics. This important realization has greatly rejuvenated research in the area of Quantitative Biology. Because of the increased need for precise quantification, a new era of technological development has opened. For example, spatio-temporal high-resolution imaging enables us to track single molecule behavior in vivo. Clever artificial control of experimental conditions and molecular structures has expanded the variety of quantities that can be directly measured. In addition, improved computational power and novel algorithms for analyzing theoretical models have made it possible to investigate complex biological phenomena. This research topic is organized on two aspects of technological advances which are the backbone of Quantitative Biology: (i) visualization of biomolecules, their dynamics and function, and (ii) generic technologies of model optimization and numeric integration. We have also included articles highlighting the need for new quantitative approaches to solve some of the long-standing cell biology questions. In the first section on visualizing biomolecules, four cutting-edge techniques are presented. Ichimura et al. provide a review of quantum dots including their basic characteristics and their applications (for example, single particle tracking). Horisawa discusses a quick and stable labeling technique using click chemistry with distinct advantages compared to fluorescent protein tags. The relatively small physical size, stability of covalent bond and simple metabolic labeling procedures in living cells provides this type of technology a potential to allow long-term imaging with least interference to protein function. Obien et al. review strategies to control microelectrodes for detecting neuronal activity and discuss techniques for higher resolution and quality of recordings using monolithic integration with on-chip circuitry. Finally, the original research article by Amariei et al. describes the oscillatory behavior of metabolites in bacteria. They describe a new method to visualize the periodic dynamics of metabolites in large scale cultures populations. These four articles contribute to the development of quantitative methods visualizing diverse targets: proteins, electrical signals and metabolites. In the second section of the topic, we have included articles on the development of computational tools to fully harness the potential of quantitative measurements through either calculation based on specific model or validation of the model itself. Kimura et al. introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. They present four examples: transcriptional regulation, bacterial chemotaxis, morphogenesis of tissues and organs, and cell cycle regulation. The original research article by Sumiyoshi et al. presents a general methodology to accelerate stochastic simulation efforts. They introduce a method to achieve 130 times faster computation of stochastic models by applying GPGPU. The strength of such accelerated numerical calculation are sometimes underestimated in biology; faster simulation enables multiple runs and in turn improved accuracy of numerical calculation which may change the final conclusion of modeling study. This also highlights the need to carefully assess simulation results and estimations using computational tools.

Quantitative Human Physiology

Quantitative Human Physiology PDF Author: Joseph J Feher
Publisher: Academic Press
ISBN: 0128011548
Category : Science
Languages : en
Pages : 1023

Get Book Here

Book Description
Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects. Winner of a 2018 Textbook Excellence Award (College) (Texty) from the Textbook and Academic Authors Association Features a quantitative approach that includes physical and chemical principles Provides a more integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology Includes clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) Integrates labs and problem sets to provide opportunities for practice and assessment throughout the course NEW FOR THE SECOND EDITION Expansion of many sections to include relevant information Addition of many new figures and re-drawing of other figures to update understanding and clarify difficult areas Substantial updating of the text to reflect newer research results Addition of several new appendices including statistics, nomenclature of transport carriers, and structural biology of important items such as the neuromuscular junction and calcium release unit Addition of new problems within the problem sets Addition of commentary to power point presentations

Quantitative Cellular Biology

Quantitative Cellular Biology PDF Author: Ferdinand Heinmets
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description


Quantitative Biology

Quantitative Biology PDF Author: Michael E Wall
Publisher: CRC Press
ISBN: 9780367864774
Category :
Languages : en
Pages : 392

Get Book Here

Book Description
Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels.

Quantitative Fundamentals of Molecular and Cellular Bioengineering

Quantitative Fundamentals of Molecular and Cellular Bioengineering PDF Author: K. Dane Wittrup
Publisher: MIT Press
ISBN: 0262042657
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.