Introduction to Pseudodifferential and Fourier Integral Operators Volume 2

Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 PDF Author: François Trèves
Publisher: Springer Science & Business Media
ISBN: 9780306404047
Category : Fourier integral operators
Languages : en
Pages : 382

Get Book Here

Book Description

Introduction to Pseudodifferential and Fourier Integral Operators Volume 2

Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 PDF Author: François Trèves
Publisher: Springer Science & Business Media
ISBN: 9780306404047
Category : Fourier integral operators
Languages : en
Pages : 382

Get Book Here

Book Description


Introduction to Pseudodifferential and Fourier Integral Operators

Introduction to Pseudodifferential and Fourier Integral Operators PDF Author: François Treves
Publisher:
ISBN:
Category :
Languages : en
Pages : 649

Get Book Here

Book Description


Pseudodifferential and Singular Integral Operators

Pseudodifferential and Singular Integral Operators PDF Author: Helmut Abels
Publisher: Walter de Gruyter
ISBN: 3110250314
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.

Introduction to Pseudodifferential and Fourier Integral Operators

Introduction to Pseudodifferential and Fourier Integral Operators PDF Author: Jean-François Treves
Publisher: Springer Science & Business Media
ISBN: 1468487809
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
I have tried in this book to describe those aspects of pseudodifferential and Fourier integral operator theory whose usefulness seems proven and which, from the viewpoint of organization and "presentability," appear to have stabilized. Since, in my opinion, the main justification for studying these operators is pragmatic, much attention has been paid to explaining their handling and to giving examples of their use. Thus the theoretical chapters usually begin with a section in which the construction of special solutions of linear partial differential equations is carried out, constructions from which the subsequent theory has emerged and which continue to motivate it: parametrices of elliptic equations in Chapter I (introducing pseudodifferen tial operators of type 1, 0, which here are called standard), of hypoelliptic equations in Chapter IV (devoted to pseudodifferential operators of type p, 8), fundamental solutions of strongly hyperbolic Cauchy problems in Chap ter VI (which introduces, from a "naive" standpoint, Fourier integral operators), and of certain nonhyperbolic forward Cauchy problems in Chapter X (Fourier integral operators with complex phase). Several chapters-II, III, IX, XI, and XII-are devoted entirely to applications. Chapter II provides all the facts about pseudodifferential operators needed in the proof of the Atiyah-Singer index theorem, then goes on to present part of the results of A. Calderon on uniqueness in the Cauchy problem, and ends with a new proof (due to J. J. Kohn) of the celebrated sum-of-squares theorem of L. Hormander, a proof that beautifully demon strates the advantages of using pseudodifferential operators.

Pseudodifferential Operators and Spectral Theory

Pseudodifferential Operators and Spectral Theory PDF Author: M.A. Shubin
Publisher: Springer Science & Business Media
ISBN: 3642565794
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.

Boundary Integral Equations

Boundary Integral Equations PDF Author: George C. Hsiao
Publisher: Springer Nature
ISBN: 3030711277
Category : Mathematics
Languages : en
Pages : 783

Get Book Here

Book Description
This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.

Introduction To Pseudo-differential Operators, An (3rd Edition)

Introduction To Pseudo-differential Operators, An (3rd Edition) PDF Author: Man-wah Wong
Publisher: World Scientific Publishing Company
ISBN: 9814583103
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
The aim of this third edition is to give an accessible and essentially self-contained account of pseudo-differential operators based on the previous edition. New chapters notwithstanding, the elementary and detailed style of earlier editions is maintained in order to appeal to the largest possible group of readers. The focus of this book is on the global theory of elliptic pseudo-differential operators on Lp(Rn).The main prerequisite for a complete understanding of the book is a basic course in functional analysis up to the level of compact operators. It is an ideal introduction for graduate students in mathematics and mathematicians who aspire to do research in pseudo-differential operators and related topics.

Introduction to Pseudodifferential and Fourier Integral Operators

Introduction to Pseudodifferential and Fourier Integral Operators PDF Author: François Treves
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Pseudodifferential Operators (PMS-34)

Pseudodifferential Operators (PMS-34) PDF Author: Michael Eugene Taylor
Publisher: Princeton University Press
ISBN: 1400886104
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
Here Michael Taylor develops pseudodifferential operators as a tool for treating problems in linear partial differential equations, including existence, uniqueness, and estimates of smoothness, as well as other qualitative properties. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Microlocal Analysis for Differential Operators

Microlocal Analysis for Differential Operators PDF Author: Alain Grigis
Publisher: Cambridge University Press
ISBN: 9780521449861
Category : Mathematics
Languages : fr
Pages : 164

Get Book Here

Book Description
This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.