Author: Laurence M. Harwood
Publisher:
ISBN: 9780198557555
Category : Medical
Languages : en
Pages : 91
Book Description
An understanding of spectroscopic techniques in the analysis of chemical structures is essential to all chemistry degree courses. This new addition to the Oxford Chemistry Primers series provides the essential material needed by undergraduates, in a compact form. It will be beneficial to postgraduates in organic chemistry as reference material in their daily research.
Introduction to Organic Spectroscopy
Author: Laurence M. Harwood
Publisher:
ISBN: 9780198557555
Category : Medical
Languages : en
Pages : 91
Book Description
An understanding of spectroscopic techniques in the analysis of chemical structures is essential to all chemistry degree courses. This new addition to the Oxford Chemistry Primers series provides the essential material needed by undergraduates, in a compact form. It will be beneficial to postgraduates in organic chemistry as reference material in their daily research.
Publisher:
ISBN: 9780198557555
Category : Medical
Languages : en
Pages : 91
Book Description
An understanding of spectroscopic techniques in the analysis of chemical structures is essential to all chemistry degree courses. This new addition to the Oxford Chemistry Primers series provides the essential material needed by undergraduates, in a compact form. It will be beneficial to postgraduates in organic chemistry as reference material in their daily research.
Organic Spectroscopy
Author: Lal Dhar Singh Yadav
Publisher: Springer Science & Business Media
ISBN: 1402025750
Category : Science
Languages : en
Pages : 334
Book Description
Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: -A logical, comprehensive, lucid and accurate presentation, thus making it easy to understand even through self-study; -Theoretical aspects of spectral techniques necessary for the interpretation of spectra; -Salient features of instrumentation involved in spectroscopic methods; -Useful spectral data in the form of tables, charts and figures; -Examples of spectra to familiarize the reader; -Many varied problems to help build competence ad confidence; -A separate chapter on ‘spectroscopic solutions of structural problems’ to emphasize the utility of spectroscopy. Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.
Publisher: Springer Science & Business Media
ISBN: 1402025750
Category : Science
Languages : en
Pages : 334
Book Description
Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: -A logical, comprehensive, lucid and accurate presentation, thus making it easy to understand even through self-study; -Theoretical aspects of spectral techniques necessary for the interpretation of spectra; -Salient features of instrumentation involved in spectroscopic methods; -Useful spectral data in the form of tables, charts and figures; -Examples of spectra to familiarize the reader; -Many varied problems to help build competence ad confidence; -A separate chapter on ‘spectroscopic solutions of structural problems’ to emphasize the utility of spectroscopy. Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.
Introduction to Organic Spectroscopy
Author: Joseph B. Lambert
Publisher: Macmillan College
ISBN: 9780023673009
Category : Chemistry, Organic
Languages : en
Pages : 454
Book Description
Publisher: Macmillan College
ISBN: 9780023673009
Category : Chemistry, Organic
Languages : en
Pages : 454
Book Description
Introduction to Spectroscopy
Author: Donald L. Pavia
Publisher:
ISBN: 9789865632021
Category : Organic compounds
Languages : en
Pages : 764
Book Description
Publisher:
ISBN: 9789865632021
Category : Organic compounds
Languages : en
Pages : 764
Book Description
Organic Spectroscopy
Author: Jag Mohan
Publisher: CRC Press
ISBN: 9780849339523
Category : Science
Languages : en
Pages : 576
Book Description
Though the format evolved in the first edition remains intact, relevant new additions have been inserted at appropriate places in various chapters of the book. Also included are a number of sample and study problems at the end of each chapter to illustrate the approach to problem solving that involve translations of sets of spectra into chemical structures. Written primarily to stimulate the interest of students in spectroscopy and make them aware of the latest developments in this field, this book begins with a general introduction to electromagnetic radiation and molecular spectroscopy. In addition to the usual topics on IR, UV, NMR and Mass spectrometry, it includes substantial material on the currently useful techniques such as FT-IR, FT-NMR 13C-NMR, 2D-NMR, GC/MS, FAB/MS, Tendem and Negative Ion Mass Spectrometry for students engaged in advanced studies. Finally it gives a detailed account on Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD).
Publisher: CRC Press
ISBN: 9780849339523
Category : Science
Languages : en
Pages : 576
Book Description
Though the format evolved in the first edition remains intact, relevant new additions have been inserted at appropriate places in various chapters of the book. Also included are a number of sample and study problems at the end of each chapter to illustrate the approach to problem solving that involve translations of sets of spectra into chemical structures. Written primarily to stimulate the interest of students in spectroscopy and make them aware of the latest developments in this field, this book begins with a general introduction to electromagnetic radiation and molecular spectroscopy. In addition to the usual topics on IR, UV, NMR and Mass spectrometry, it includes substantial material on the currently useful techniques such as FT-IR, FT-NMR 13C-NMR, 2D-NMR, GC/MS, FAB/MS, Tendem and Negative Ion Mass Spectrometry for students engaged in advanced studies. Finally it gives a detailed account on Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD).
Introduction to Spectroscopy
Author: Donald L. Pavia
Publisher: Thomson Brooks/Cole
ISBN: 9780495555759
Category : Organic compounds
Languages : en
Pages : 727
Book Description
Gain an understanding of the latest advances in spectroscopy with the text that has set the unrivaled standard for more than 30 years: Pavia/Lampman/Kriz/Vyvyan's INTRODUCTION TO SPECTROSCOPY, 4e International Edition. This comprehensive resource provides an unmatched systematic introduction to spectra and basic theoretical concepts in spectroscopic methods that create a practical learning resource whether you're an introductory student or someone who needs a reliable reference text on spectroscopy.This well-rounded introduction features updated spectra; a modernized presentation of one-dimensional nuclear magnetic resonance (NMR) spectroscopy; the introduction of biological molecules in mass spectrometry; and inclusion of modern techniques alongside DEPT, COSY, and HECTOR. Count on this book's exceptional presentation to provide the comprehensive coverage you need to understand today's spectroscopic techniques.
Publisher: Thomson Brooks/Cole
ISBN: 9780495555759
Category : Organic compounds
Languages : en
Pages : 727
Book Description
Gain an understanding of the latest advances in spectroscopy with the text that has set the unrivaled standard for more than 30 years: Pavia/Lampman/Kriz/Vyvyan's INTRODUCTION TO SPECTROSCOPY, 4e International Edition. This comprehensive resource provides an unmatched systematic introduction to spectra and basic theoretical concepts in spectroscopic methods that create a practical learning resource whether you're an introductory student or someone who needs a reliable reference text on spectroscopy.This well-rounded introduction features updated spectra; a modernized presentation of one-dimensional nuclear magnetic resonance (NMR) spectroscopy; the introduction of biological molecules in mass spectrometry; and inclusion of modern techniques alongside DEPT, COSY, and HECTOR. Count on this book's exceptional presentation to provide the comprehensive coverage you need to understand today's spectroscopic techniques.
Phosphorus-31 NMR Spectroscopy
Author: Olaf Kühl
Publisher: Springer Science & Business Media
ISBN: 3540791183
Category : Science
Languages : en
Pages : 138
Book Description
Nuclear Magnetic Resonance is a powerful tool, especially for the identification of 1 13 hitherto unknown organic compounds. H- and C-NMR spectroscopy is known and applied by virtually every synthetically working Organic Chemist. Con- quently, the factors governing the differences in chemical shift values, based on chemical environment, bonding, temperature, solvent, pH, etc. , are well understood, and specialty methods developed for almost every conceivable structural challenge. Proton and carbon NMR spectroscopy is part of most bachelors degree courses, with advanced methods integrated into masters degree and other graduate courses. In view of this universal knowledge about proton and carbon NMR spectr- copy within the chemical community, it is remarkable that heteronuclear NMR is still looked upon as something of a curiosity. Admittedly, most organic compounds contain only nitrogen, oxygen, and sulfur atoms, as well as the obligatory hydrogen and carbon atoms, elements that have an unfavourable isotope distribution when it comes to NMR spectroscopy. Each of these three elements has a dominant isotope: 14 16 32 16 32 N (99. 63% natural abundance), O (99. 76%), and S (95. 02%), with O, S, and 34 14 S (4. 21%) NMR silent. N has a nuclear moment I = 1 and a sizeable quadrupolar moment that makes the NMR signals usually very broad and dif cult to analyse.
Publisher: Springer Science & Business Media
ISBN: 3540791183
Category : Science
Languages : en
Pages : 138
Book Description
Nuclear Magnetic Resonance is a powerful tool, especially for the identification of 1 13 hitherto unknown organic compounds. H- and C-NMR spectroscopy is known and applied by virtually every synthetically working Organic Chemist. Con- quently, the factors governing the differences in chemical shift values, based on chemical environment, bonding, temperature, solvent, pH, etc. , are well understood, and specialty methods developed for almost every conceivable structural challenge. Proton and carbon NMR spectroscopy is part of most bachelors degree courses, with advanced methods integrated into masters degree and other graduate courses. In view of this universal knowledge about proton and carbon NMR spectr- copy within the chemical community, it is remarkable that heteronuclear NMR is still looked upon as something of a curiosity. Admittedly, most organic compounds contain only nitrogen, oxygen, and sulfur atoms, as well as the obligatory hydrogen and carbon atoms, elements that have an unfavourable isotope distribution when it comes to NMR spectroscopy. Each of these three elements has a dominant isotope: 14 16 32 16 32 N (99. 63% natural abundance), O (99. 76%), and S (95. 02%), with O, S, and 34 14 S (4. 21%) NMR silent. N has a nuclear moment I = 1 and a sizeable quadrupolar moment that makes the NMR signals usually very broad and dif cult to analyse.
Organic Structure Determination Using 2-D NMR Spectroscopy
Author: Jeffrey H. Simpson
Publisher: Academic Press
ISBN: 0123849705
Category : Science
Languages : en
Pages : 591
Book Description
"The second edition of this book comes with a number of new figures, passages, and problems. Increasing the number of figures from 290 to 448 has necessarily added considerable length, weight, and, expense. It is my hope that the book has not lost any of its readability and accessibility. I firmly believe that most of the concepts needed to learn organic structure determination using nuclear magnetic resonance spectroscopy do not require an extensive mathematical background. It is my hope that the manner in which the material contained in this book is presented both reflects and validates this belief"--
Publisher: Academic Press
ISBN: 0123849705
Category : Science
Languages : en
Pages : 591
Book Description
"The second edition of this book comes with a number of new figures, passages, and problems. Increasing the number of figures from 290 to 448 has necessarily added considerable length, weight, and, expense. It is my hope that the book has not lost any of its readability and accessibility. I firmly believe that most of the concepts needed to learn organic structure determination using nuclear magnetic resonance spectroscopy do not require an extensive mathematical background. It is my hope that the manner in which the material contained in this book is presented both reflects and validates this belief"--
Organic Structural Spectroscopy
Author: Joseph B. Lambert
Publisher: Pearson
ISBN: 9781292039565
Category :
Languages : en
Pages : 464
Book Description
Chapter 1 Introduction 1-1 The Spectroscopic Approach to Structure Determination 1-2 Contributions of Different Forms of Spectroscopy 1-3 The Electromagnetic Spectrum 1-4 Molecular Weight and Molecular Formula 1-5 Structural Isomers and Stereoisomers Problems Part I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 2 Introduction 2-1 Magnetic Properties of Nuclei 2-2 The Chemical Shift 2-3 Excitation and Relaxation 2-4 Pulsed Experiments 2-5 The Coupling Constant 2-6 Quantification and Complex Splitting 2-7 Commonly Studied Nuclides 2-8 Dynamic Effects 2-9 Spectra of Solids 2-10 Experimental Methods Problems Tips on Solving NMR Problems Bibliography Chapter 3 The Chemical Shift 3-1 Factors That Influence Proton Shifts 3-2 Proton Chemical Shifts and Structure 3-3 Medium and Isotope Effects 3-4 Factors That Influence Carbon Shirts 3-5 Carbon Chemical Shifts and Structure 3-6 Tables of Chemical Shifts Problems Further Tips on Solving NMR Problems Bibliography Chapter 4 The Coupling Constant 4-1 First-Order Spectra 4-2 Chemical and Magnetic Equivalence 4-3 Signs and Mechanisms 4-4 Couplings over One Bond 4-5 Geminal Couplings 4-6 Vicinal Couplings 4-7 Long-Range Couplings 4-8 Spectral Analysis 4-9 Second-Order Spectra 4-10 Tables of Coupling Constants Problems Bibliography Chapter 5 Further Topics in One-Dimensional NMR 5-1 Spin-Lattice and Spin-Spin Relaxation 5-2 Reactions on the NMR Time Scale 5-3 Multiple Resonance 5-4 The Nuclear Overhauser Effect 5-5 Spectral Editing 5-6 Sensitivity Enhancement 5-7 Carbon Connectivity 5-8 Phase Cycling, Composite Pulses, and Shaped Pulses Problems Bibliography Chapter 6 Two-Dimensional NMR 6-1 Proton-Proton Correlation Through Coupling 6-2 Proton-Heteronucleus Correlation 6-3 Proton-Proton Correlation Through Space or Chemical Exchange 6-4 Carbon-Carbon Correlation 6-5 Higher Dimensions 6-6 Pulsed Field Gradients 6-7 Summary of Two-Dimensional Methods Problems Bibliography Part II MASS SPECTROMETRY Chapter 7 Instrumentation and Theory 7-1 Introduction 7-2 Ionization Methods 7-3 Mass Analysis 7-4 Sample Preparation Chapter 8 Ion Activation and Fragmentation 8-1 Basic Principles 8-2 Methods and Energetics 8-3 Functional Groups Chapter 9 Structural Analysis 9-1 Molecular Weights 9-2 Molecular Formula 9-3 Structures from Fragmentation Patterns 9-4 Polymers Chapter 10 Quantitative Applications 10-1 Quantification of Analytes 10-2 Thermochemistry Part III VIBRATIONAL SPECTROSCOPY Chapter 11 Introduction 11-1 Introduction 11-2 Vibrations of Molecules 11-3 Infrared and Raman Spectra 11-4 Units and Notation 11-5 Infrared Spectra: Dispersive and Fourier Transform 11-6 Sampling Methods for Infrared Transmission Spectra 11-7 Raman Spectroscopy 11-8 Raman Sampling Methods 11-9 Depolarization Measurements 11-10 Infrared Reflection Spectroscopy Problems Bibliography Chapter 12 Group Frequencies 12-1 Introduction 12-2 Factors Affecting Group Frequencies 12-3 Infrared Group Frequencies 12-4 Raman Group Frequencies 12-5 Preliminary Analysis 12-6 The CH Stretching Region (3340-2700 cm-1) 12-7 The Carbonyl Stretching Region (1850-1650 cm-1) 12-8 Aromatic Compounds 12-9 Compounds Containing Methyl Groups 12-10 Compounds Containing Methylene Groups 12-11 Unsaturated Compounds 12-12 Compounds Containing Oxygen 12-13 Compounds Containing Nitrogen 12-14 Compounds Containing Phosphorus and Sulfur 12-15 Heterocyclic Compounds 12-16 Compounds Containing Halogens 12-17 Boron, Silicon, Tin, Lead, and Mercury Compounds 12-18 Isotopically Labeled Compounds 12-19 Using the Literature on Vibrational Spectroscopy Problems Bibliography Part IV ELECTRONIC ABSORPTION SPECTROSCOPY Chapter 13 Introduction and Experimental Methods 13-1 Introduction 13-2 Measurement of Ultraviolet-Visible Light Absorption 13-3 Quantitative Measurements 13-4 Electronic Transitions 13-5 Experimental Aspects Problems Bibliography Chapter 14 Structural Analysis 14-1 Isolated Chromophores 14-2 Conjugated Chromophores 14-3 Aromatic Compounds 14-4 Important Naturally Occurring Chromophores 14-5 The Woodward-Fieser Rules 14-6 Steric Effects 14-7 Solvent Effects and Dynamic Equilibria 14-8 Hydrogen Bonding Studies 14-9 Homoconjugation 14-10 Charge Transfer Band 14-11 Worked Problems Problems Bibliography Chapter 15 Integrated Problems
Publisher: Pearson
ISBN: 9781292039565
Category :
Languages : en
Pages : 464
Book Description
Chapter 1 Introduction 1-1 The Spectroscopic Approach to Structure Determination 1-2 Contributions of Different Forms of Spectroscopy 1-3 The Electromagnetic Spectrum 1-4 Molecular Weight and Molecular Formula 1-5 Structural Isomers and Stereoisomers Problems Part I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 2 Introduction 2-1 Magnetic Properties of Nuclei 2-2 The Chemical Shift 2-3 Excitation and Relaxation 2-4 Pulsed Experiments 2-5 The Coupling Constant 2-6 Quantification and Complex Splitting 2-7 Commonly Studied Nuclides 2-8 Dynamic Effects 2-9 Spectra of Solids 2-10 Experimental Methods Problems Tips on Solving NMR Problems Bibliography Chapter 3 The Chemical Shift 3-1 Factors That Influence Proton Shifts 3-2 Proton Chemical Shifts and Structure 3-3 Medium and Isotope Effects 3-4 Factors That Influence Carbon Shirts 3-5 Carbon Chemical Shifts and Structure 3-6 Tables of Chemical Shifts Problems Further Tips on Solving NMR Problems Bibliography Chapter 4 The Coupling Constant 4-1 First-Order Spectra 4-2 Chemical and Magnetic Equivalence 4-3 Signs and Mechanisms 4-4 Couplings over One Bond 4-5 Geminal Couplings 4-6 Vicinal Couplings 4-7 Long-Range Couplings 4-8 Spectral Analysis 4-9 Second-Order Spectra 4-10 Tables of Coupling Constants Problems Bibliography Chapter 5 Further Topics in One-Dimensional NMR 5-1 Spin-Lattice and Spin-Spin Relaxation 5-2 Reactions on the NMR Time Scale 5-3 Multiple Resonance 5-4 The Nuclear Overhauser Effect 5-5 Spectral Editing 5-6 Sensitivity Enhancement 5-7 Carbon Connectivity 5-8 Phase Cycling, Composite Pulses, and Shaped Pulses Problems Bibliography Chapter 6 Two-Dimensional NMR 6-1 Proton-Proton Correlation Through Coupling 6-2 Proton-Heteronucleus Correlation 6-3 Proton-Proton Correlation Through Space or Chemical Exchange 6-4 Carbon-Carbon Correlation 6-5 Higher Dimensions 6-6 Pulsed Field Gradients 6-7 Summary of Two-Dimensional Methods Problems Bibliography Part II MASS SPECTROMETRY Chapter 7 Instrumentation and Theory 7-1 Introduction 7-2 Ionization Methods 7-3 Mass Analysis 7-4 Sample Preparation Chapter 8 Ion Activation and Fragmentation 8-1 Basic Principles 8-2 Methods and Energetics 8-3 Functional Groups Chapter 9 Structural Analysis 9-1 Molecular Weights 9-2 Molecular Formula 9-3 Structures from Fragmentation Patterns 9-4 Polymers Chapter 10 Quantitative Applications 10-1 Quantification of Analytes 10-2 Thermochemistry Part III VIBRATIONAL SPECTROSCOPY Chapter 11 Introduction 11-1 Introduction 11-2 Vibrations of Molecules 11-3 Infrared and Raman Spectra 11-4 Units and Notation 11-5 Infrared Spectra: Dispersive and Fourier Transform 11-6 Sampling Methods for Infrared Transmission Spectra 11-7 Raman Spectroscopy 11-8 Raman Sampling Methods 11-9 Depolarization Measurements 11-10 Infrared Reflection Spectroscopy Problems Bibliography Chapter 12 Group Frequencies 12-1 Introduction 12-2 Factors Affecting Group Frequencies 12-3 Infrared Group Frequencies 12-4 Raman Group Frequencies 12-5 Preliminary Analysis 12-6 The CH Stretching Region (3340-2700 cm-1) 12-7 The Carbonyl Stretching Region (1850-1650 cm-1) 12-8 Aromatic Compounds 12-9 Compounds Containing Methyl Groups 12-10 Compounds Containing Methylene Groups 12-11 Unsaturated Compounds 12-12 Compounds Containing Oxygen 12-13 Compounds Containing Nitrogen 12-14 Compounds Containing Phosphorus and Sulfur 12-15 Heterocyclic Compounds 12-16 Compounds Containing Halogens 12-17 Boron, Silicon, Tin, Lead, and Mercury Compounds 12-18 Isotopically Labeled Compounds 12-19 Using the Literature on Vibrational Spectroscopy Problems Bibliography Part IV ELECTRONIC ABSORPTION SPECTROSCOPY Chapter 13 Introduction and Experimental Methods 13-1 Introduction 13-2 Measurement of Ultraviolet-Visible Light Absorption 13-3 Quantitative Measurements 13-4 Electronic Transitions 13-5 Experimental Aspects Problems Bibliography Chapter 14 Structural Analysis 14-1 Isolated Chromophores 14-2 Conjugated Chromophores 14-3 Aromatic Compounds 14-4 Important Naturally Occurring Chromophores 14-5 The Woodward-Fieser Rules 14-6 Steric Effects 14-7 Solvent Effects and Dynamic Equilibria 14-8 Hydrogen Bonding Studies 14-9 Homoconjugation 14-10 Charge Transfer Band 14-11 Worked Problems Problems Bibliography Chapter 15 Integrated Problems
High-resolution NMR Techniques in Organic Chemistry
Author: T. Claridge
Publisher: Elsevier
ISBN: 9780080427997
Category : Science
Languages : en
Pages : 408
Book Description
From the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. These have, in many cases, already become established techniques in NMR laboratories, in both academic and industrial establishments. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.
Publisher: Elsevier
ISBN: 9780080427997
Category : Science
Languages : en
Pages : 408
Book Description
From the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. These have, in many cases, already become established techniques in NMR laboratories, in both academic and industrial establishments. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.