Author: Adriaan C. Zaanen
Publisher: Springer Science & Business Media
ISBN: 3642606377
Category : Mathematics
Languages : en
Pages : 312
Book Description
Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936).
Introduction to Operator Theory in Riesz Spaces
Author: Adriaan C. Zaanen
Publisher: Springer Science & Business Media
ISBN: 3642606377
Category : Mathematics
Languages : en
Pages : 312
Book Description
Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936).
Publisher: Springer Science & Business Media
ISBN: 3642606377
Category : Mathematics
Languages : en
Pages : 312
Book Description
Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936).
Elements of Hilbert Spaces and Operator Theory
Author: Harkrishan Lal Vasudeva
Publisher: Springer
ISBN: 9811030200
Category : Mathematics
Languages : en
Pages : 528
Book Description
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Publisher: Springer
ISBN: 9811030200
Category : Mathematics
Languages : en
Pages : 528
Book Description
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
An Invitation to Operator Theory
Author: Yuri A. Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821821466
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
Publisher: American Mathematical Soc.
ISBN: 0821821466
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
An Introduction to Frames and Riesz Bases
Author: Ole Christensen
Publisher: Birkhäuser
ISBN: 3319256130
Category : Mathematics
Languages : en
Pages : 719
Book Description
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
Publisher: Birkhäuser
ISBN: 3319256130
Category : Mathematics
Languages : en
Pages : 719
Book Description
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
Pre-Riesz Spaces
Author: Anke Kalauch
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110475448
Category : Mathematics
Languages : en
Pages : 443
Book Description
This monograph develops the theory of pre-Riesz spaces, which are the partially ordered vector spaces that embed order densely into Riesz spaces. Concepts from Riesz space theory such as disjointness, ideals, and bands are extended to pre-Riesz spaces. The analysis revolves around embedding techniques, including the Riesz completion and the functional representation. In the same spirit, norms and topologies on a pre-Riesz space and their extensions to the Riesz completion are examined. The generalized concepts are used to investigate disjointness preserving operators on pre-Riesz spaces and related notions. The monograph presents recent results as well as being an accessible introduction to the theory of partially ordered vector spaces and positive operators. Contents A primer on ordered vector spaces Embeddings, covers, and completions Seminorms on pre-Riesz spaces Disjointness, bands, and ideals in pre-Riesz spaces Operators on pre-Riesz spaces
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110475448
Category : Mathematics
Languages : en
Pages : 443
Book Description
This monograph develops the theory of pre-Riesz spaces, which are the partially ordered vector spaces that embed order densely into Riesz spaces. Concepts from Riesz space theory such as disjointness, ideals, and bands are extended to pre-Riesz spaces. The analysis revolves around embedding techniques, including the Riesz completion and the functional representation. In the same spirit, norms and topologies on a pre-Riesz space and their extensions to the Riesz completion are examined. The generalized concepts are used to investigate disjointness preserving operators on pre-Riesz spaces and related notions. The monograph presents recent results as well as being an accessible introduction to the theory of partially ordered vector spaces and positive operators. Contents A primer on ordered vector spaces Embeddings, covers, and completions Seminorms on pre-Riesz spaces Disjointness, bands, and ideals in pre-Riesz spaces Operators on pre-Riesz spaces
Operator Theory and Differential Equations
Author: Anatoly G. Kusraev
Publisher: Springer Nature
ISBN: 3030497631
Category : Mathematics
Languages : en
Pages : 337
Book Description
This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.
Publisher: Springer Nature
ISBN: 3030497631
Category : Mathematics
Languages : en
Pages : 337
Book Description
This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.
Basic Operator Theory
Author: Israel Gohberg
Publisher: Birkhäuser
ISBN: 1461259851
Category : Mathematics
Languages : en
Pages : 291
Book Description
rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter.
Publisher: Birkhäuser
ISBN: 1461259851
Category : Mathematics
Languages : en
Pages : 291
Book Description
rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter.
An Introduction to Banach Space Theory
Author: Robert E. Megginson
Publisher: Springer Science & Business Media
ISBN: 1461206030
Category : Mathematics
Languages : en
Pages : 613
Book Description
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
Publisher: Springer Science & Business Media
ISBN: 1461206030
Category : Mathematics
Languages : en
Pages : 613
Book Description
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
Recent Trends in Operator Theory and Applications
Author: Fernanda Botelho
Publisher: American Mathematical Soc.
ISBN: 1470448955
Category : Education
Languages : en
Pages : 194
Book Description
This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3–5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error correction; a survey of results on Toeplitz operators, and applications of Toeplitz operators to the study of reproducing kernel functions; results on the 2-local reflexivity problem of a set of operators; topics from the theory of preservers; and recent trends on the study of quotients of tensor product spaces and tensor operators. It also includes research articles that present overviews of state-of-the-art techniques from operator theory as well as applications to recent research trends and open questions. A goal of all articles is to introduce topics within operator theory to the general public.
Publisher: American Mathematical Soc.
ISBN: 1470448955
Category : Education
Languages : en
Pages : 194
Book Description
This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3–5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error correction; a survey of results on Toeplitz operators, and applications of Toeplitz operators to the study of reproducing kernel functions; results on the 2-local reflexivity problem of a set of operators; topics from the theory of preservers; and recent trends on the study of quotients of tensor product spaces and tensor operators. It also includes research articles that present overviews of state-of-the-art techniques from operator theory as well as applications to recent research trends and open questions. A goal of all articles is to introduce topics within operator theory to the general public.
Operator Theory in Function Spaces
Author: Kehe Zhu
Publisher: American Mathematical Soc.
ISBN: 0821839659
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
Publisher: American Mathematical Soc.
ISBN: 0821839659
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.