Introduction to Non-Euclidean Geometry

Introduction to Non-Euclidean Geometry PDF Author: Harold E. Wolfe
Publisher: Courier Corporation
ISBN: 0486498506
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
One of the first college-level texts for elementary courses in non-Euclidean geometry, this volumeis geared toward students familiar with calculus. Topics include the fifth postulate, hyperbolicplane geometry and trigonometry, and elliptic plane geometry and trigonometry. Extensiveappendixes offer background information on Euclidean geometry, and numerous exercisesappear throughout the text.Reprint of the Holt, Rinehart & Winston, Inc., New York, 1945 edition

Introduction to Non-Euclidean Geometry

Introduction to Non-Euclidean Geometry PDF Author: Harold E. Wolfe
Publisher: Courier Corporation
ISBN: 0486498506
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
One of the first college-level texts for elementary courses in non-Euclidean geometry, this volumeis geared toward students familiar with calculus. Topics include the fifth postulate, hyperbolicplane geometry and trigonometry, and elliptic plane geometry and trigonometry. Extensiveappendixes offer background information on Euclidean geometry, and numerous exercisesappear throughout the text.Reprint of the Holt, Rinehart & Winston, Inc., New York, 1945 edition

Euclidean and Non-Euclidean Geometry International Student Edition

Euclidean and Non-Euclidean Geometry International Student Edition PDF Author: Patrick J. Ryan
Publisher: Cambridge University Press
ISBN: 0521127076
Category : Mathematics
Languages : hr
Pages : 237

Get Book Here

Book Description
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.

Introductory Non-Euclidean Geometry

Introductory Non-Euclidean Geometry PDF Author: Henry Parker Manning
Publisher: Courier Corporation
ISBN: 0486154645
Category : Mathematics
Languages : en
Pages : 110

Get Book Here

Book Description
This fine and versatile introduction begins with the theorems common to Euclidean and non-Euclidean geometry, and then it addresses the specific differences that constitute elliptic and hyperbolic geometry. 1901 edition.

Euclidean and Non-Euclidean Geometries

Euclidean and Non-Euclidean Geometries PDF Author: Marvin J. Greenberg
Publisher: Macmillan
ISBN: 9780716724469
Category : Mathematics
Languages : en
Pages : 512

Get Book Here

Book Description
This classic text provides overview of both classic and hyperbolic geometries, placing the work of key mathematicians/ philosophers in historical context. Coverage includes geometric transformations, models of the hyperbolic planes, and pseudospheres.

A History of Non-Euclidean Geometry

A History of Non-Euclidean Geometry PDF Author: Boris A. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 1441986804
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.

Geometry of Surfaces

Geometry of Surfaces PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 1461209293
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.

The Four Pillars of Geometry

The Four Pillars of Geometry PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

Geometry: Plane and Fancy

Geometry: Plane and Fancy PDF Author: David A. Singer
Publisher: Springer Science & Business Media
ISBN: 9780387983066
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
A fascinating tour through parts of geometry students are unlikely to see in the rest of their studies while, at the same time, anchoring their excursions to the well known parallel postulate of Euclid. The author shows how alternatives to Euclids fifth postulate lead to interesting and different patterns and symmetries, and, in the process of examining geometric objects, the author incorporates the algebra of complex and hypercomplex numbers, some graph theory, and some topology. Interesting problems are scattered throughout the text. Nevertheless, the book merely assumes a course in Euclidean geometry at high school level. While many concepts introduced are advanced, the mathematical techniques are not. Singers lively exposition and off-beat approach will greatly appeal both to students and mathematicians, and the contents of the book can be covered in a one-semester course, perhaps as a sequel to a Euclidean geometry course.

Introduction to Hyperbolic Geometry

Introduction to Hyperbolic Geometry PDF Author: Arlan Ramsay
Publisher: Springer Science & Business Media
ISBN: 1475755856
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.

Non-Euclidean Geometry in the Theory of Automorphic Functions

Non-Euclidean Geometry in the Theory of Automorphic Functions PDF Author: Jacques Hadamard
Publisher: American Mathematical Soc.
ISBN: 9780821890479
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
This is the English translation of a volume originally published only in Russian and now out of print. The book was written by Jacques Hadamard on the work of Poincare. Poincare's creation of a theory of automorphic functions in the early 1880s was one of the most significant mathematical achievements of the nineteenth century. It directly inspired the uniformization theorem, led to a class of functions adequate to solve all linear ordinary differential equations, and focused attention on a large new class of discrete groups. It was the first significant application of non-Euclidean geometry. This unique exposition by Hadamard offers a fascinating and intuitive introduction to the subject of automorphic functions and illuminates its connection to differential equations, a connection not often found in other texts.