Author: Bradley J. Congelio
Publisher: CRC Press
ISBN: 1003813267
Category : Sports & Recreation
Languages : en
Pages : 383
Book Description
It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans, and commentators, throughout broadcasts, regularly use terms such as air yards, CPOE, and EPA on a casual basis. This rapid growth, combined with an increasing accessibility to NFL data, has helped create a burgeoning amateur analytics movement, highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor, Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to, opting to provide step-by-step instructions in a structured, jargon-free manner. Key Coverage: Installing R, RStudio, and necessary packages Working and becoming fluent in the tidyverse Finding meaning in NFL data with examples from all the functions in the nflverse family of packages Using NFL data to create eye-catching data visualizations Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders, as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL, while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists, bloggers, and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.
Introduction to NFL Analytics with R
Author: Bradley J. Congelio
Publisher: CRC Press
ISBN: 1003813267
Category : Sports & Recreation
Languages : en
Pages : 383
Book Description
It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans, and commentators, throughout broadcasts, regularly use terms such as air yards, CPOE, and EPA on a casual basis. This rapid growth, combined with an increasing accessibility to NFL data, has helped create a burgeoning amateur analytics movement, highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor, Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to, opting to provide step-by-step instructions in a structured, jargon-free manner. Key Coverage: Installing R, RStudio, and necessary packages Working and becoming fluent in the tidyverse Finding meaning in NFL data with examples from all the functions in the nflverse family of packages Using NFL data to create eye-catching data visualizations Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders, as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL, while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists, bloggers, and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.
Publisher: CRC Press
ISBN: 1003813267
Category : Sports & Recreation
Languages : en
Pages : 383
Book Description
It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans, and commentators, throughout broadcasts, regularly use terms such as air yards, CPOE, and EPA on a casual basis. This rapid growth, combined with an increasing accessibility to NFL data, has helped create a burgeoning amateur analytics movement, highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor, Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to, opting to provide step-by-step instructions in a structured, jargon-free manner. Key Coverage: Installing R, RStudio, and necessary packages Working and becoming fluent in the tidyverse Finding meaning in NFL data with examples from all the functions in the nflverse family of packages Using NFL data to create eye-catching data visualizations Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders, as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL, while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists, bloggers, and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.
Introduction to Classifier Performance Analysis with R
Author: Sutaip L.C. Saw
Publisher: CRC Press
ISBN: 1040176372
Category : Computers
Languages : en
Pages : 222
Book Description
Classification problems are common in business, medicine, science, engineering and other sectors of the economy. Data scientists and machine learning professionals solve these problems through the use of classifiers. Choosing one of these data driven classification algorithms for a given problem is a challenging task. An important aspect involved in this task is classifier performance analysis (CPA). Introduction to Classifier Performance Analysis with R provides an introductory account of commonly used CPA techniques for binary and multiclass problems, and use of the R software system to accomplish the analysis. Coverage draws on the extensive literature available on the subject, including descriptive and inferential approaches to CPA. Exercises are included at the end of each chapter to reinforce learning. Key Features: An introduction to binary and multiclass classification problems is provided, including some classifiers based on statistical, machine and ensemble learning. Commonly used techniques for binary and multiclass CPA are covered, some from less well-known but useful points of view. Coverage also includes important topics that have not received much attention in textbook accounts of CPA. Limitations of some commonly used performance measures are highlighted. Coverage includes performance parameters and inferential techniques for them. Also covered are techniques for comparative analysis of competing classifiers. A key contribution involves the use of key R meta-packages like tidyverse and tidymodels for CPA, particularly the very useful yardstick package. This is a useful resource for upper level undergraduate and masters level students in data science, machine learning and related disciplines. Practitioners interested in learning how to use R to evaluate classifier performance can also potentially benefit from the book. The material and references in the book can also serve the needs of researchers in CPA.
Publisher: CRC Press
ISBN: 1040176372
Category : Computers
Languages : en
Pages : 222
Book Description
Classification problems are common in business, medicine, science, engineering and other sectors of the economy. Data scientists and machine learning professionals solve these problems through the use of classifiers. Choosing one of these data driven classification algorithms for a given problem is a challenging task. An important aspect involved in this task is classifier performance analysis (CPA). Introduction to Classifier Performance Analysis with R provides an introductory account of commonly used CPA techniques for binary and multiclass problems, and use of the R software system to accomplish the analysis. Coverage draws on the extensive literature available on the subject, including descriptive and inferential approaches to CPA. Exercises are included at the end of each chapter to reinforce learning. Key Features: An introduction to binary and multiclass classification problems is provided, including some classifiers based on statistical, machine and ensemble learning. Commonly used techniques for binary and multiclass CPA are covered, some from less well-known but useful points of view. Coverage also includes important topics that have not received much attention in textbook accounts of CPA. Limitations of some commonly used performance measures are highlighted. Coverage includes performance parameters and inferential techniques for them. Also covered are techniques for comparative analysis of competing classifiers. A key contribution involves the use of key R meta-packages like tidyverse and tidymodels for CPA, particularly the very useful yardstick package. This is a useful resource for upper level undergraduate and masters level students in data science, machine learning and related disciplines. Practitioners interested in learning how to use R to evaluate classifier performance can also potentially benefit from the book. The material and references in the book can also serve the needs of researchers in CPA.
Introduction to NFL Analytics with R
Author: Bradley J. Congelio
Publisher: Chapman & Hall/CRC
ISBN: 9781032427959
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presents an introduction to the analysis of NFL data using R. It emphasizes the use of the tidyverse in R, together with NFL-specific packages, such as nflverse, nflfastR, and nflreadr. It covers the entire sports analytics framework, including data collection, cleaning and wrangling, visualization, analysis, and advanced methods.
Publisher: Chapman & Hall/CRC
ISBN: 9781032427959
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presents an introduction to the analysis of NFL data using R. It emphasizes the use of the tidyverse in R, together with NFL-specific packages, such as nflverse, nflfastR, and nflreadr. It covers the entire sports analytics framework, including data collection, cleaning and wrangling, visualization, analysis, and advanced methods.
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1040105505
Category : Mathematics
Languages : en
Pages : 346
Book Description
Unlike the first edition, the new edition has been split into two books. Thoroughly revised and updated, this is the first book of the second edition of Introduction to Data Science: Data Wrangling and Visualization with R. It introduces skills that can help you tackle real-world data analysis challenges. These include R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation with Quarto and knitr. The new edition includes additional material/chapters on data.table, locales, and accessing data through APIs. The book is divided into four parts: R, Data Visualization, Data Wrangling, and Productivity Tools. Each part has several chapters meant to be presented as one lecture and includes dozens of exercises. The second book will cover topics including probability, statistics and prediction algorithms with R. Throughout the book, we use motivating case studies. In each case study, we try to realistically mimic a data scientist’s experience. For each of the skills covered, we start by asking specific questions and answer these through data analysis. Examples of the case studies included in the book are: US murder rates by state, self-reported student heights, trends in world health and economics, and the impact of vaccines on infectious disease rates. This book is meant to be a textbook for a first course in Data Science. No previous knowledge of R is necessary, although some experience with programming may be helpful. To be a successful data analyst implementing these skills covered in this book requires understanding advanced statistical concepts, such as those covered the second book. If you read and understand all the chapters and complete all the exercises in this book, and understand statistical concepts, you will be well-positioned to perform basic data analysis tasks and you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1040105505
Category : Mathematics
Languages : en
Pages : 346
Book Description
Unlike the first edition, the new edition has been split into two books. Thoroughly revised and updated, this is the first book of the second edition of Introduction to Data Science: Data Wrangling and Visualization with R. It introduces skills that can help you tackle real-world data analysis challenges. These include R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation with Quarto and knitr. The new edition includes additional material/chapters on data.table, locales, and accessing data through APIs. The book is divided into four parts: R, Data Visualization, Data Wrangling, and Productivity Tools. Each part has several chapters meant to be presented as one lecture and includes dozens of exercises. The second book will cover topics including probability, statistics and prediction algorithms with R. Throughout the book, we use motivating case studies. In each case study, we try to realistically mimic a data scientist’s experience. For each of the skills covered, we start by asking specific questions and answer these through data analysis. Examples of the case studies included in the book are: US murder rates by state, self-reported student heights, trends in world health and economics, and the impact of vaccines on infectious disease rates. This book is meant to be a textbook for a first course in Data Science. No previous knowledge of R is necessary, although some experience with programming may be helpful. To be a successful data analyst implementing these skills covered in this book requires understanding advanced statistical concepts, such as those covered the second book. If you read and understand all the chapters and complete all the exercises in this book, and understand statistical concepts, you will be well-positioned to perform basic data analysis tasks and you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Data Science
Author: Tiffany Timbers
Publisher: CRC Press
ISBN: 1040106668
Category : Mathematics
Languages : en
Pages : 452
Book Description
Data Science: A First Introduction with Python focuses on using the Python programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. Based on educational research and active learning principles, the book uses a modern approach to Python and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The text will leave readers well-prepared for data science projects. It is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates at the University of British Columbia. Key Features: Includes autograded worksheets for interactive, self-directed learning. Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such as pandas, scikit-learn, and altair. Is designed for a broad audience of learners from all backgrounds and disciplines.
Publisher: CRC Press
ISBN: 1040106668
Category : Mathematics
Languages : en
Pages : 452
Book Description
Data Science: A First Introduction with Python focuses on using the Python programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. Based on educational research and active learning principles, the book uses a modern approach to Python and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The text will leave readers well-prepared for data science projects. It is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates at the University of British Columbia. Key Features: Includes autograded worksheets for interactive, self-directed learning. Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such as pandas, scikit-learn, and altair. Is designed for a broad audience of learners from all backgrounds and disciplines.
Mathematical Engineering of Deep Learning
Author: Benoit Liquet
Publisher: CRC Press
ISBN: 1040116884
Category : Computers
Languages : en
Pages : 415
Book Description
Mathematical Engineering of Deep Learning provides a complete and concise overview of deep learning using the language of mathematics. The book provides a self-contained background on machine learning and optimization algorithms and progresses through the key ideas of deep learning. These ideas and architectures include deep neural networks, convolutional models, recurrent models, long/short-term memory, the attention mechanism, transformers, variational auto-encoders, diffusion models, generative adversarial networks, reinforcement learning, and graph neural networks. Concepts are presented using simple mathematical equations together with a concise description of relevant tricks of the trade. The content is the foundation for state-of-the-art artificial intelligence applications, involving images, sound, large language models, and other domains. The focus is on the basic mathematical description of algorithms and methods and does not require computer programming. The presentation is also agnostic to neuroscientific relationships, historical perspectives, and theoretical research. The benefit of such a concise approach is that a mathematically equipped reader can quickly grasp the essence of deep learning. Key Features: A perfect summary of deep learning not tied to any computer language, or computational framework. An ideal handbook of deep learning for readers that feel comfortable with mathematical notation. An up-to-date description of the most influential deep learning ideas that have made an impact on vision, sound, natural language understanding, and scientific domains. The exposition is not tied to the historical development of the field or to neuroscience, allowing the reader to quickly grasp the essentials. Deep learning is easily described through the language of mathematics at a level accessible to many professionals. Readers from fields such as engineering, statistics, physics, pure mathematics, econometrics, operations research, quantitative management, quantitative biology, applied machine learning, or applied deep learning will quickly gain insights into the key mathematical engineering components of the field.
Publisher: CRC Press
ISBN: 1040116884
Category : Computers
Languages : en
Pages : 415
Book Description
Mathematical Engineering of Deep Learning provides a complete and concise overview of deep learning using the language of mathematics. The book provides a self-contained background on machine learning and optimization algorithms and progresses through the key ideas of deep learning. These ideas and architectures include deep neural networks, convolutional models, recurrent models, long/short-term memory, the attention mechanism, transformers, variational auto-encoders, diffusion models, generative adversarial networks, reinforcement learning, and graph neural networks. Concepts are presented using simple mathematical equations together with a concise description of relevant tricks of the trade. The content is the foundation for state-of-the-art artificial intelligence applications, involving images, sound, large language models, and other domains. The focus is on the basic mathematical description of algorithms and methods and does not require computer programming. The presentation is also agnostic to neuroscientific relationships, historical perspectives, and theoretical research. The benefit of such a concise approach is that a mathematically equipped reader can quickly grasp the essence of deep learning. Key Features: A perfect summary of deep learning not tied to any computer language, or computational framework. An ideal handbook of deep learning for readers that feel comfortable with mathematical notation. An up-to-date description of the most influential deep learning ideas that have made an impact on vision, sound, natural language understanding, and scientific domains. The exposition is not tied to the historical development of the field or to neuroscience, allowing the reader to quickly grasp the essentials. Deep learning is easily described through the language of mathematics at a level accessible to many professionals. Readers from fields such as engineering, statistics, physics, pure mathematics, econometrics, operations research, quantitative management, quantitative biology, applied machine learning, or applied deep learning will quickly gain insights into the key mathematical engineering components of the field.
Spatial Statistics for Data Science
Author: Paula Moraga
Publisher: CRC Press
ISBN: 100383230X
Category : Mathematics
Languages : en
Pages : 298
Book Description
Describes R packages for retrieval, manipulation, and visualization of spatial data Offers a comprehensive overview of spatial statistical methods including spatial autocorrelation, clustering, spatial interpolation, model-based geostatistics, and spatial point processes Provides detailed explanations on how to fit and interpret Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches
Publisher: CRC Press
ISBN: 100383230X
Category : Mathematics
Languages : en
Pages : 298
Book Description
Describes R packages for retrieval, manipulation, and visualization of spatial data Offers a comprehensive overview of spatial statistical methods including spatial autocorrelation, clustering, spatial interpolation, model-based geostatistics, and spatial point processes Provides detailed explanations on how to fit and interpret Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches
The Data Preparation Journey
Author: Martin Hugh Monkman
Publisher: CRC Press
ISBN: 1040019137
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The Data Preparation Journey: Finding Your Way With R introduces the principles of data preparation within in a systematic approach that follows a typical data science or statistical workflow. With that context, readers will work through practical solutions to resolving problems in data using the statistical and data science programming language R. These solutions include examples of complex real-world data, adding greater context and exposing the reader to greater technical challenges. This book focuses on the Import to Tidy to Transform steps. It demonstrates how “Visualise” is an important part of Exploratory Data Analysis, a strategy for identifying potential problems with the data prior to cleaning. This book is designed for readers with a working knowledge of data manipulation functions in R or other programming languages. It is suitable for academics for whom analyzing data is crucial, businesses who make decisions based on the insights gleaned from collecting data from customer interactions, and public servants who use data to inform policy and program decisions. The principles and practices described within The Data Preparation Journey apply regardless of the context. Key Features: Includes R package containing the code and data sets used in the book Comprehensive examples of data preparation from a variety of disciplines Defines the key principles of data preparation, from access to publication
Publisher: CRC Press
ISBN: 1040019137
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The Data Preparation Journey: Finding Your Way With R introduces the principles of data preparation within in a systematic approach that follows a typical data science or statistical workflow. With that context, readers will work through practical solutions to resolving problems in data using the statistical and data science programming language R. These solutions include examples of complex real-world data, adding greater context and exposing the reader to greater technical challenges. This book focuses on the Import to Tidy to Transform steps. It demonstrates how “Visualise” is an important part of Exploratory Data Analysis, a strategy for identifying potential problems with the data prior to cleaning. This book is designed for readers with a working knowledge of data manipulation functions in R or other programming languages. It is suitable for academics for whom analyzing data is crucial, businesses who make decisions based on the insights gleaned from collecting data from customer interactions, and public servants who use data to inform policy and program decisions. The principles and practices described within The Data Preparation Journey apply regardless of the context. Key Features: Includes R package containing the code and data sets used in the book Comprehensive examples of data preparation from a variety of disciplines Defines the key principles of data preparation, from access to publication
Getting (more out of) Graphics
Author: Antony Unwin
Publisher: CRC Press
ISBN: 1040035477
Category : Mathematics
Languages : en
Pages : 447
Book Description
Data graphics are used extensively to present information. Understanding graphics is a lot about understanding the data represented by the graphics, having a feel not just for the numbers themselves, the reliability and uncertainty associated with them, but also for what they mean. This book presents a practical approach to data visualisation with real applications front and centre. The first part of the book is a series of case studies, each describing a graphical analysis of a real dataset. The second part pulls together ideas from the case studies and provides an overview of the main factors affecting understanding graphics. Key Features: Explains how to get insights from graphics. Emphasises the value of drawing many graphics. Underlines the importance for analysis of background knowledge and context. Readers may be data scientists, statisticians or people who want to become more visually literate. A knowledge of Statistics is not required, just an interest in data graphics and some experience of working with data. It will help if the reader knows something of basic graphic forms such as barcharts, histograms, and scatterplots.
Publisher: CRC Press
ISBN: 1040035477
Category : Mathematics
Languages : en
Pages : 447
Book Description
Data graphics are used extensively to present information. Understanding graphics is a lot about understanding the data represented by the graphics, having a feel not just for the numbers themselves, the reliability and uncertainty associated with them, but also for what they mean. This book presents a practical approach to data visualisation with real applications front and centre. The first part of the book is a series of case studies, each describing a graphical analysis of a real dataset. The second part pulls together ideas from the case studies and provides an overview of the main factors affecting understanding graphics. Key Features: Explains how to get insights from graphics. Emphasises the value of drawing many graphics. Underlines the importance for analysis of background knowledge and context. Readers may be data scientists, statisticians or people who want to become more visually literate. A knowledge of Statistics is not required, just an interest in data graphics and some experience of working with data. It will help if the reader knows something of basic graphic forms such as barcharts, histograms, and scatterplots.