Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 146253466X
Category : Social Science
Languages : en
Pages : 714
Book Description
This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.
Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition
Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 146253466X
Category : Social Science
Languages : en
Pages : 714
Book Description
This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.
Publisher: Guilford Publications
ISBN: 146253466X
Category : Social Science
Languages : en
Pages : 714
Book Description
This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.
Introduction to Statistical Mediation Analysis
Author: David MacKinnon
Publisher: Routledge
ISBN: 1136676139
Category : Medical
Languages : en
Pages : 479
Book Description
This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.
Publisher: Routledge
ISBN: 1136676139
Category : Medical
Languages : en
Pages : 479
Book Description
This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.
Introduction to Mediation, Moderation, and Conditional Process Analysis
Author: Andrew F. Hayes
Publisher: Guilford Press
ISBN: 1462511279
Category : Psychology
Languages : en
Pages : 527
Book Description
Explaining the fundamentals of mediation and moderation analysis, this engaging book also shows how to integrate the two using an innovative strategy known as conditional process analysis. Procedures are described for testing hypotheses about the mechanisms by which causal effects operate, the conditions under which they occur, and the moderation of mechanisms. Relying on the principles of ordinary least squares regression, Andrew Hayes carefully explains the estimation and interpretation of direct and indirect effects, probing and visualization of interactions, and testing of questions about moderated mediation. Examples using data from published studies illustrate how to conduct and report the analyses described in the book. Of special value, the book introduces and documents PROCESS, a macro for SPSS and SAS that does all the computations described in the book. The companion website (www.afhayes.com) offers free downloads of PROCESS plus data files for the book's examples. Unique features include: *Compelling examples (presumed media influence, sex discrimination in the workplace, and more) with real data; boxes with SAS, SPSS, and PROCESS code; and loads of tips, including how to report mediation, moderation and conditional process analyses. *Appendix that presents documentation on use and features of PROCESS. *Online supplement providing data, code, and syntax for the book's examples.
Publisher: Guilford Press
ISBN: 1462511279
Category : Psychology
Languages : en
Pages : 527
Book Description
Explaining the fundamentals of mediation and moderation analysis, this engaging book also shows how to integrate the two using an innovative strategy known as conditional process analysis. Procedures are described for testing hypotheses about the mechanisms by which causal effects operate, the conditions under which they occur, and the moderation of mechanisms. Relying on the principles of ordinary least squares regression, Andrew Hayes carefully explains the estimation and interpretation of direct and indirect effects, probing and visualization of interactions, and testing of questions about moderated mediation. Examples using data from published studies illustrate how to conduct and report the analyses described in the book. Of special value, the book introduces and documents PROCESS, a macro for SPSS and SAS that does all the computations described in the book. The companion website (www.afhayes.com) offers free downloads of PROCESS plus data files for the book's examples. Unique features include: *Compelling examples (presumed media influence, sex discrimination in the workplace, and more) with real data; boxes with SAS, SPSS, and PROCESS code; and loads of tips, including how to report mediation, moderation and conditional process analyses. *Appendix that presents documentation on use and features of PROCESS. *Online supplement providing data, code, and syntax for the book's examples.
Regression Analysis and Linear Models
Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689
Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689
Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Statistical Methods for Communication Science
Author: Andrew F. Hayes
Publisher: Routledge
ISBN: 1135250898
Category : Language Arts & Disciplines
Languages : en
Pages : 712
Book Description
Statistical Methods for Communication Science is the only statistical methods volume currently available that focuses exclusively on statistics in communication research. Writing in a straightforward, personal style, author Andrew F. Hayes offers this accessible and thorough introduction to statistical methods, starting with the fundamentals of measurement and moving on to discuss such key topics as sampling procedures, probability, reliability, hypothesis testing, simple correlation and regression, and analyses of variance and covariance. Hayes takes readers through each topic with clear explanations and illustrations. He provides a multitude of examples, all set in the context of communication research, thus engaging readers directly and helping them to see the relevance and importance of statistics to the field of communication. Highlights of this text include: *thorough and balanced coverage of topics; *integration of classical methods with modern "resampling" approaches to inference; *consideration of practical, "real world" issues; *numerous examples and applications, all drawn from communication research; *up-to-date information, with examples justifying use of various techniques; and *downloadable resources with macros, data sets, figures, and additional materials. This unique book can be used as a stand-alone classroom text, a supplement to traditional research methods texts, or a useful reference manual. It will be invaluable to students, faculty, researchers, and practitioners in communication, and it will serve to advance the understanding and use of statistical methods throughout the discipline.
Publisher: Routledge
ISBN: 1135250898
Category : Language Arts & Disciplines
Languages : en
Pages : 712
Book Description
Statistical Methods for Communication Science is the only statistical methods volume currently available that focuses exclusively on statistics in communication research. Writing in a straightforward, personal style, author Andrew F. Hayes offers this accessible and thorough introduction to statistical methods, starting with the fundamentals of measurement and moving on to discuss such key topics as sampling procedures, probability, reliability, hypothesis testing, simple correlation and regression, and analyses of variance and covariance. Hayes takes readers through each topic with clear explanations and illustrations. He provides a multitude of examples, all set in the context of communication research, thus engaging readers directly and helping them to see the relevance and importance of statistics to the field of communication. Highlights of this text include: *thorough and balanced coverage of topics; *integration of classical methods with modern "resampling" approaches to inference; *consideration of practical, "real world" issues; *numerous examples and applications, all drawn from communication research; *up-to-date information, with examples justifying use of various techniques; and *downloadable resources with macros, data sets, figures, and additional materials. This unique book can be used as a stand-alone classroom text, a supplement to traditional research methods texts, or a useful reference manual. It will be invaluable to students, faculty, researchers, and practitioners in communication, and it will serve to advance the understanding and use of statistical methods throughout the discipline.
Explanation in Causal Inference
Author: Tyler J. VanderWeele
Publisher: Oxford University Press, USA
ISBN: 0199325871
Category : Mathematics
Languages : en
Pages : 729
Book Description
A comprehensive examination of methods for mediation and interaction, VanderWeele's book is the first to approach this topic from the perspective of causal inference. Numerous software tools are provided, and the text is both accessible and easy to read, with examples drawn from diverse fields. The result is an essential reference for anyone conducting empirical research in the biomedical or social sciences.
Publisher: Oxford University Press, USA
ISBN: 0199325871
Category : Mathematics
Languages : en
Pages : 729
Book Description
A comprehensive examination of methods for mediation and interaction, VanderWeele's book is the first to approach this topic from the perspective of causal inference. Numerous software tools are provided, and the text is both accessible and easy to read, with examples drawn from diverse fields. The result is an essential reference for anyone conducting empirical research in the biomedical or social sciences.
Measurement Theory in Action
Author: Kenneth S Shultz
Publisher: Routledge
ISBN: 1317970888
Category : Psychology
Languages : en
Pages : 419
Book Description
This book helps readers apply testing and measurement theories. Featuring 22 self-standing modules, instructors can pick and choose the ones that are most appropriate for their course. Each module features an overview of a measurement issue and a step-by-step application of that theory. Best practices provide recommendations for ensuring the appropriate application of the theory. Practical questions help students assess their understanding of the topic while the examples allow them to apply the material using real data. Two cases in each module depict typical dilemmas faced when applying measurement theory followed by Questions to Ponder to encourage critical examination of the issues noted in the cases. Each module contains exercises some of which require no computer access while others involve the use of SPSS to solve the problem. The book’s website houses the accompanying data sets and more. The book also features suggested readings, a glossary of the key terms, and a continuing exercise that incorporates many of the steps in the development of a measure of typical performance. Updated throughout to reflect recent changes in the field, the new edition also features: --A new co-author, Michael Zickar, who updated the advanced topics and added the new module on generalizability theory (Module 22). -Expanded coverage of reliability (Modules 5 & 6) and exploratory and confirmatory factor analysis (Modules 18 & 19) to help readers interpret results presented in journal articles. -Expanded Web Resources, Instructors will now find: suggested answers to the book’s questions and exercises; detailed worked solutions to the exercises; and PowerPoint slides. Students and instructors can access the SPSS data sets; additional exercises; the glossary; and website references that are helpful in understanding psychometric concepts. Part 1 provides an introduction to measurement theory and specs for scaling and testing and a review of statistics. Part 2 then progresses through practical issues related to text reliability, validation, meta-analysis and bias. Part 3 reviews practical issues related to text construction such as the development of measures of maximal performance, CTT item analysis, test scoring, developing measures of typical performance, and issues related to response styles and guessing. The book concludes with advanced topics such as multiple regression, exploratory and confirmatory factor analysis, item response theory (IRT), IRT applications including computer adaptive testing and differential item functioning, and generalizability theory. Ideal as a text for any psychometrics, testing and measurement, or multivariate statistics course taught in psychology, education, marketing and management, professional researchers in need of a quick refresher on applying measurement theory will also find this an invaluable reference.
Publisher: Routledge
ISBN: 1317970888
Category : Psychology
Languages : en
Pages : 419
Book Description
This book helps readers apply testing and measurement theories. Featuring 22 self-standing modules, instructors can pick and choose the ones that are most appropriate for their course. Each module features an overview of a measurement issue and a step-by-step application of that theory. Best practices provide recommendations for ensuring the appropriate application of the theory. Practical questions help students assess their understanding of the topic while the examples allow them to apply the material using real data. Two cases in each module depict typical dilemmas faced when applying measurement theory followed by Questions to Ponder to encourage critical examination of the issues noted in the cases. Each module contains exercises some of which require no computer access while others involve the use of SPSS to solve the problem. The book’s website houses the accompanying data sets and more. The book also features suggested readings, a glossary of the key terms, and a continuing exercise that incorporates many of the steps in the development of a measure of typical performance. Updated throughout to reflect recent changes in the field, the new edition also features: --A new co-author, Michael Zickar, who updated the advanced topics and added the new module on generalizability theory (Module 22). -Expanded coverage of reliability (Modules 5 & 6) and exploratory and confirmatory factor analysis (Modules 18 & 19) to help readers interpret results presented in journal articles. -Expanded Web Resources, Instructors will now find: suggested answers to the book’s questions and exercises; detailed worked solutions to the exercises; and PowerPoint slides. Students and instructors can access the SPSS data sets; additional exercises; the glossary; and website references that are helpful in understanding psychometric concepts. Part 1 provides an introduction to measurement theory and specs for scaling and testing and a review of statistics. Part 2 then progresses through practical issues related to text reliability, validation, meta-analysis and bias. Part 3 reviews practical issues related to text construction such as the development of measures of maximal performance, CTT item analysis, test scoring, developing measures of typical performance, and issues related to response styles and guessing. The book concludes with advanced topics such as multiple regression, exploratory and confirmatory factor analysis, item response theory (IRT), IRT applications including computer adaptive testing and differential item functioning, and generalizability theory. Ideal as a text for any psychometrics, testing and measurement, or multivariate statistics course taught in psychology, education, marketing and management, professional researchers in need of a quick refresher on applying measurement theory will also find this an invaluable reference.
Interpreting and Visualizing Regression Models Using Stata
Author: MICHAEL N. MITCHELL
Publisher: Stata Press
ISBN: 9781597183215
Category :
Languages : en
Pages : 610
Book Description
Interpreting and Visualizing Regression Models Using Stata, Second Edition provides clear and simple examples illustrating how to interpret and visualize a wide variety of regression models. Including over 200 figures, the book illustrates linear models with continuous predictors (modeled linearly, using polynomials, and piecewise), interactions of continuous predictors, categorical predictors, interactions of categorical predictors, and interactions of continuous and categorical predictors. The book also illustrates how to interpret and visualize results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic or ordinal logistic regression), and models involving complex survey data. The examples illustrate the use of the margins, marginsplot, contrast, and pwcompare commands. This new edition reflects new and enhanced features added to Stata, most importantly the ability to label statistical output using value labels associated with factor variables. As a result, output regarding marital status is labeled using intuitive labels like Married and Unmarried instead of using numeric values such as 1 and 2. All the statistical output in this new edition capitalizes on this new feature, emphasizing the interpretation of results based on variables labeled using intuitive value labels. Additionally, this second edition illustrates other new features, such as using transparency in graphics to more clearly visualize overlapping confidence intervals and using small sample-size estimation with mixed models. If you ever find yourself wishing for simple and straightforward advice about how to interpret and visualize regression models using Stata, this book is for you.
Publisher: Stata Press
ISBN: 9781597183215
Category :
Languages : en
Pages : 610
Book Description
Interpreting and Visualizing Regression Models Using Stata, Second Edition provides clear and simple examples illustrating how to interpret and visualize a wide variety of regression models. Including over 200 figures, the book illustrates linear models with continuous predictors (modeled linearly, using polynomials, and piecewise), interactions of continuous predictors, categorical predictors, interactions of categorical predictors, and interactions of continuous and categorical predictors. The book also illustrates how to interpret and visualize results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic or ordinal logistic regression), and models involving complex survey data. The examples illustrate the use of the margins, marginsplot, contrast, and pwcompare commands. This new edition reflects new and enhanced features added to Stata, most importantly the ability to label statistical output using value labels associated with factor variables. As a result, output regarding marital status is labeled using intuitive labels like Married and Unmarried instead of using numeric values such as 1 and 2. All the statistical output in this new edition capitalizes on this new feature, emphasizing the interpretation of results based on variables labeled using intuitive value labels. Additionally, this second edition illustrates other new features, such as using transparency in graphics to more clearly visualize overlapping confidence intervals and using small sample-size estimation with mixed models. If you ever find yourself wishing for simple and straightforward advice about how to interpret and visualize regression models using Stata, this book is for you.
Multiple Regression and Beyond
Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 655
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 655
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
The Reviewer’s Guide to Quantitative Methods in the Social Sciences
Author: Gregory R. Hancock
Publisher: Routledge
ISBN: 1135172994
Category : Education
Languages : en
Pages : 449
Book Description
Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.
Publisher: Routledge
ISBN: 1135172994
Category : Education
Languages : en
Pages : 449
Book Description
Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.