Introduction to Mathematical Structures and Proofs

Introduction to Mathematical Structures and Proofs PDF Author: Larry J. Gerstein
Publisher: Springer Science & Business Media
ISBN: 1461442656
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Introduction to Mathematical Structures and Proofs

Introduction to Mathematical Structures and Proofs PDF Author: Larry J. Gerstein
Publisher: Springer Science & Business Media
ISBN: 1461442656
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Introduction · to Mathematical Structures and · Proofs

Introduction · to Mathematical Structures and · Proofs PDF Author: Larry Gerstein
Publisher: Springer Science & Business Media
ISBN: 1468467085
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.

Discrete Mathematics - Proof Techniques And Mathematical Structures

Discrete Mathematics - Proof Techniques And Mathematical Structures PDF Author: Robert Clark Penner
Publisher: World Scientific Publishing Company
ISBN: 9813105615
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.

Introduction to Mathematical Structures and Proofs

Introduction to Mathematical Structures and Proofs PDF Author: Larry J. Gerstein
Publisher: Springer Science & Business Media
ISBN: 9780387979977
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This acclaimed book aids the transition from lower-division calculus to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology and more, with examples, images, exercises and a solution manual for instructors.

Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Proofs from THE BOOK

Proofs from THE BOOK PDF Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Introduction to Mathematical Structures

Introduction to Mathematical Structures PDF Author: Steven Galovich
Publisher: Brooks/Cole Publishing Company
ISBN: 9780155434684
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description


An Introduction to Algebraic Structures

An Introduction to Algebraic Structures PDF Author: Joseph Landin
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.

A Logical Introduction to Proof

A Logical Introduction to Proof PDF Author: Daniel W. Cunningham
Publisher: Springer Science & Business Media
ISBN: 1461436311
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

An Introduction to Abstract Mathematics

An Introduction to Abstract Mathematics PDF Author: Robert J. Bond
Publisher: Waveland Press
ISBN: 1478608056
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.