Introduction to Geometry of Manifolds with Symmetry

Introduction to Geometry of Manifolds with Symmetry PDF Author: V.V. Trofimov
Publisher: Springer Science & Business Media
ISBN: 9401719616
Category : Mathematics
Languages : en
Pages : 339

Get Book

Book Description
One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical systems. Relativity theory amended our understanding of the problem of space by amalgamating space and time into an integral four-dimensional manifold. One of the most important problems, lying at the crossroad of natural sciences and philosophy is the problem of the structure of the world as a whole. There are a lot of possibilities for the topology offour dimensional space-time, and at first sight a lot of possibilities arise in cosmology. In principle, not only can the global topology of the universe be complicated, but also smaller scale topological structures can be very nontrivial. One can imagine two "usual" spaces connected with a "throat", making the topology of the union complicated.

Introduction to Geometry of Manifolds with Symmetry

Introduction to Geometry of Manifolds with Symmetry PDF Author: V.V. Trofimov
Publisher: Springer Science & Business Media
ISBN: 9401719616
Category : Mathematics
Languages : en
Pages : 339

Get Book

Book Description
One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical systems. Relativity theory amended our understanding of the problem of space by amalgamating space and time into an integral four-dimensional manifold. One of the most important problems, lying at the crossroad of natural sciences and philosophy is the problem of the structure of the world as a whole. There are a lot of possibilities for the topology offour dimensional space-time, and at first sight a lot of possibilities arise in cosmology. In principle, not only can the global topology of the universe be complicated, but also smaller scale topological structures can be very nontrivial. One can imagine two "usual" spaces connected with a "throat", making the topology of the union complicated.

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Get Book

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Geometry of Manifolds with Non-negative Sectional Curvature

Geometry of Manifolds with Non-negative Sectional Curvature PDF Author: Owen Dearricott
Publisher: Springer
ISBN: 3319063731
Category : Mathematics
Languages : en
Pages : 196

Get Book

Book Description
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.

The Geometry of Walker Manifolds

The Geometry of Walker Manifolds PDF Author: Miguel Brozos-Vázquez
Publisher: Morgan & Claypool Publishers
ISBN: 1598298194
Category : Mathematics
Languages : en
Pages : 178

Get Book

Book Description
Basic algebraic notions -- Introduction -- A historical perspective in the algebraic context -- Algebraic preliminaries -- Jordan normal form -- Indefinite geometry -- Algebraic curvature tensors -- Hermitian and para-Hermitian geometry -- The Jacobi and skew symmetric curvature operators -- Sectional, Ricci, scalar, and Weyl curvature -- Curvature decompositions -- Self-duality and anti-self-duality conditions -- Spectral geometry of the curvature operator -- Osserman and conformally Osserman models -- Osserman curvature models in signature (2, 2) -- Ivanov-Petrova curvature models -- Osserman Ivanov-Petrova curvature models -- Commuting curvature models -- Basic geometrical notions -- Introduction -- History -- Basic manifold theory -- The tangent bundle, lie bracket, and lie groups -- The cotangent bundle and symplectic geometry -- Connections, curvature, geodesics, and holonomy -- Pseudo-Riemannian geometry -- The Levi-Civita connection -- Associated natural operators -- Weyl scalar invariants -- Null distributions -- Pseudo-Riemannian holonomy -- Other geometric structures -- Pseudo-Hermitian and para-Hermitian structures -- Hyper-para-Hermitian structures -- Geometric realizations -- Homogeneous spaces, and curvature homogeneity -- Technical results in differential equations -- Walker structures -- Introduction -- Historical development -- Walker coordinates -- Examples of Walker manifolds -- Hypersurfaces with nilpotent shape operators -- Locally conformally flat metrics with nilpotent Ricci operator -- Degenerate pseudo-Riemannian homogeneous structures -- Para-Kaehler geometry -- Two-step nilpotent lie groups with degenerate center -- Conformally symmetric pseudo-Riemannian metrics -- Riemannian extensions -- The affine category -- Twisted Riemannian extensions defined by flat connections -- Modified Riemannian extensions defined by flat connections -- Nilpotent Walker manifolds -- Osserman Riemannian extensions -- Ivanov-Petrova Riemannian extensions -- Three-dimensional Lorentzian Walker manifolds -- Introduction -- History -- Three dimensional Walker geometry -- Adapted coordinates -- The Jordan normal form of the Ricci operator -- Christoffel symbols, curvature, and the Ricci tensor -- Locally symmetric Walker manifolds -- Einstein-like manifolds -- The spectral geometry of the curvature tensor -- Curvature commutativity properties -- Local geometry of Walker manifolds with -- Foliated Walker manifolds -- Contact Walker manifolds -- Strict Walker manifolds -- Three dimensional homogeneous Lorentzian manifolds -- Three dimensional lie groups and lie algebras -- Curvature homogeneous Lorentzian manifolds -- Diagonalizable Ricci operator -- Type II Ricci operator -- Four-dimensional Walker manifolds -- Introduction -- History -- Four-dimensional Walker manifolds -- Almost para-Hermitian geometry -- Isotropic almost para-Hermitian structures -- Characteristic classes -- Self-dual Walker manifolds -- The spectral geometry of the curvature tensor -- Introduction -- History -- Four-dimensional Osserman metrics -- Osserman metrics with diagonalizable Jacobi operator -- Osserman Walker type II metrics -- Osserman and Ivanov-Petrova metrics -- Riemannian extensions of affine surfaces -- Affine surfaces with skew symmetric Ricci tensor -- Affine surfaces with symmetric and degenerate Ricci tensor -- Riemannian extensions with commuting curvature operators -- Other examples with commuting curvature operators -- Hermitian geometry -- Introduction -- History -- Almost Hermitian geometry of Walker manifolds -- The proper almost Hermitian structure of a Walker manifold -- Proper almost hyper-para-Hermitian structures -- Hermitian Walker manifolds of dimension four -- Proper Hermitian Walker structures -- Locally conformally Kaehler structures -- Almost Kaehler Walker four-dimensional manifolds -- Special Walker manifolds -- Introduction -- History -- Curvature commuting conditions -- Curvature homogeneous strict Walker manifolds -- Bibliography.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 220

Get Book

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF Author: Joel W. Robbin
Publisher: Springer Nature
ISBN: 3662643405
Category : Mathematics
Languages : en
Pages : 426

Get Book

Book Description
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Lectures on the Geometry of Manifolds

Lectures on the Geometry of Manifolds PDF Author: Liviu I. Nicolaescu
Publisher: World Scientific
ISBN: 9812770291
Category : Mathematics
Languages : en
Pages : 606

Get Book

Book Description
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar� duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H�lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

Geometric Mechanics and Symmetry

Geometric Mechanics and Symmetry PDF Author: Darryl D. Holm
Publisher: Oxford University Press
ISBN: 0191549878
Category : Mathematics
Languages : en
Pages :

Get Book

Book Description
Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such as n particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject. After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group theory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyze the Euler-Poincaré equations for dynamics on Lie groups. Additional topics deal with rigid and pseudo-rigid bodies, the heavy top, shallow water waves, geophysical fluid dynamics and computational anatomy. The text ends with a discussion of the semidirect-product Euler-Poincaré reduction theorem for ideal fluid dynamics. A variety of examples and figures illustrate the material, while the many exercises, both solved and unsolved, make the book a valuable class text.

An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised

An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised PDF Author: William Munger Boothby
Publisher: Gulf Professional Publishing
ISBN: 9780121160517
Category : Mathematics
Languages : en
Pages : 444

Get Book

Book Description
The second edition of An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential introduction to the subject for mathematics students, engineers, physicists, and economists who need to learn how to apply these vital methods. It is also the only book that thoroughly reviews certain areas of advanced calculus that are necessary to understand the subject. Line and surface integrals Divergence and curl of vector fields

Tropical Geometry and Mirror Symmetry

Tropical Geometry and Mirror Symmetry PDF Author: Mark Gross
Publisher: American Mathematical Soc.
ISBN: 0821852329
Category : Mathematics
Languages : en
Pages : 338

Get Book

Book Description
Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.