Conformal Invariance and Critical Phenomena

Conformal Invariance and Critical Phenomena PDF Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433

Get Book Here

Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.

Conformal Invariance and Critical Phenomena

Conformal Invariance and Critical Phenomena PDF Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433

Get Book Here

Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.

Introduction to Conformal Invariance and Its Applications to Critical Phenomena

Introduction to Conformal Invariance and Its Applications to Critical Phenomena PDF Author: Philippe Christe
Publisher: Springer Science & Business Media
ISBN: 3540475753
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.

Conformal Invariance And Applications To Statistical Mechanics

Conformal Invariance And Applications To Statistical Mechanics PDF Author: C Itzykson
Publisher: World Scientific
ISBN: 9814507598
Category :
Languages : en
Pages : 992

Get Book Here

Book Description
This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.

Non-perturbative Qft Methods And Their Applications, Procs Of The Johns Hopkins Workshop On Current Problems In Particle Theory 24

Non-perturbative Qft Methods And Their Applications, Procs Of The Johns Hopkins Workshop On Current Problems In Particle Theory 24 PDF Author: Zalan Horvath
Publisher: World Scientific
ISBN: 9814490830
Category : Science
Languages : en
Pages : 471

Get Book Here

Book Description
Contents:Conformal Boundary Conditions — and What They Teach Us (V B Petkova & J-B Zuber)A Physical Basis for the Entropy of the AdS3 Black Hole (S Fernando & F Mansouri)Spinon Formulation of the Kondo Problem (A Klümper & J R Reyes-Martinez)Boundary Integrable Quantum Field Theories (P Dorey)Finite Size Effects in Integrable Quantum Field Theories (F Ravanini)Nonperturbative Analysis of the Two-Frequency Sine-Gordon Model (Z Bajnok et al.)Screening in Hot SU(2) Gauge Theory and Propagators in 3D Adjoint Higgs Model (A Cucchieri et al.)Effective Average Action in Statistical Physics and Quantum Field Theory (Ch Wetterich)Phase Transitions in Non-Hermitean Matrix Models and the “Single Ring” Theorem (J Feinberg et al.)Unraveling the Mystery of Flavor (A Falk)The Nahm Transformation on R2 X T2 (C Ford)A 2D Integrable Axion Model and Target Space Duality (P Forgács)Supersymmetric Ward Identities and Chiral Symmetry Breaking in SUSY QED (M L Walker)and other papers Readership: Theoretical, mathematical and high energy physicists. Keywords:

Conformal Field Theory

Conformal Field Theory PDF Author: Philippe Francesco
Publisher: Springer Science & Business Media
ISBN: 1461222567
Category : Science
Languages : en
Pages : 908

Get Book Here

Book Description
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.

Introduction to Photon Communication

Introduction to Photon Communication PDF Author: Cherif Bendjaballah
Publisher: Springer Science & Business Media
ISBN: 3540492062
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description
In recent years, progress in the generation of squeezed states of light, mainly characterized by a reduced noise property, has stimulated important work in relation to their potential use to improve the sensitivity of optical communication systems. These notes are devoted to the detection and information processing of optical signals at very low levels of power. A survey of recent developments from the quantum and classical points of view is presented. Ultimate limits of performance under the criteria of detection and information are established. Some of the results are detailed and may be utilized for the design of practical systems of communication using present technology. The book addresses physicists and engineers interested in present and future developments in optical communications.

ITEP Lectures on Particle Physics and Field Theory

ITEP Lectures on Particle Physics and Field Theory PDF Author: Mikhail A. Shifman
Publisher: World Scientific
ISBN: 9789810239503
Category : Field theory
Languages : en
Pages : 422

Get Book Here

Book Description


Fourth Granada Lectures in Computational Physics

Fourth Granada Lectures in Computational Physics PDF Author: Pedro L. Garrido
Publisher: Springer
ISBN: 3662141485
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
The methods developed to deal with the computational aspects of physi cal problems are useful in an increasing number of situations, from chem istry, biology and geology to engineering, communications and economics. In fact, computational physics has evolved into a trans-disciplinary field now concerned with the creative use of computers in scientific research. More over, computational methods often help students to develop a deeper under standing of key concepts, and enhance their problem-solving abilities. There fore, computational physics is recognized as having an important educational value, and educators face the task of outlining appropriate curricula to take advantage of these unique features. This is an important motivation for the publication of the contents of the Seminar on Computational Physics which is held in Granada every two years. The seminar aims at bringing together small groups of students and active researchers on different aspects of computational physics. It is part of the doctoral programme of the University of Granada. The proceedings of the previous editions were published as II Granada Lectures in Computational Physics (World Scientific, Singapore 1993) and Third Granada Lectures in Computational Physics (Lecture Notes in Physics, vol. 448, Springer, Berlin 1995) by the same editors. The present book contains the invited lecture notes and a very brief account of contributions by participants at the 4th Granada Seminar on Computational Physics (Granada, Spain, 9-14 September 1996).

Nonperturbative Quantum-field-theoretic Methods and Their Applications

Nonperturbative Quantum-field-theoretic Methods and Their Applications PDF Author: Z. Horv th
Publisher: World Scientific
ISBN: 9789812799968
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
Contents: Conformal Boundary Conditions OCo and What They Teach Us (V B Petkova & J-B Zuber); A Physical Basis for the Entropy of the AdS 3 Black Hole (S Fernando & F Mansouri); Spinon Formulation of the Kondo Problem (A Klmper & J R Reyes-Martinez); Boundary Integrable Quantum Field Theories (P Dorey); Finite Size Effects in Integrable Quantum Field Theories (F Ravanini); Nonperturbative Analysis of the Two-Frequency Sine-Gordon Model (Z Bajnok et al.); Screening in Hot SU(2) Gauge Theory and Propagators in 3D Adjoint Higgs Model (A Cucchieri et al.); Effective Average Action in Statistical Physics and Quantum Field Theory (Ch Wetterich); Phase Transitions in Non-Hermitean Matrix Models and the OC Single RingOCO Theorem (J Feinberg et al.); Unraveling the Mystery of Flavor (A Falk); The Nahm Transformation on R 2 X T 2 (C Ford); A 2D Integrable Axion Model and Target Space Duality (P Forgics); Supersymmetric Ward Identities and Chiral Symmetry Breaking in SUSY QED (M L Walker); and other papers. Readership: Theoretical, mathematical and high energy physicists."

Itep Lectures On Particle Physics And Field Theory (In 2 Vols)

Itep Lectures On Particle Physics And Field Theory (In 2 Vols) PDF Author: Misha Shifman
Publisher: World Scientific
ISBN: 9814499013
Category : Science
Languages : en
Pages : 919

Get Book Here

Book Description
For almost two decades Prof. Shifman, a clear and pedagogical expositor, has been giving review lectures on frontier topics in theoretical high energy physics. This two-volume book is a collection of some of the best of those lectures. The lectures written in the 1980's and early 1990's have been revised and updated specifically for this publication. The lectures in this book are intended for beginners - graduate students and young researchers - who are about to delve into the intricacies of the theory. They were used by the author in his course ';Advanced Modern Field Theory and Its Applications';, given in the academic year 1994/95 at the University of Minnesota.A wide range of key topics is covered. In Volume 1, the first two chapters are devoted to quantum chromodynamics as the theory of hadrons. The author gives an in-depth discussion of a variety ofpowerful methods based on Wilson's operator product expansion. Chapter 3 (written together with V Novikov, A Vainshtein, and V Zakharov) is the most systematic and pedagogical presentation of instantons in the gauge theories one can find in the literature. Chapter 4 introduces supersymmetry. Chapter 5, concluding this volume, reviews the fascinating dynamics of supersymmetric gauge theories in the strong coupling regime. Chapter 6, which opens Volume 2, is a culmination of the supersymmetric theme. It gives a state-of-the-art description of the breakthrough developments in supersymmetric gauge theories. It has been written specifically for this book by A Vainshtein and the author. Chapter 7 is designed as a primer of two-dimensional conformal field theory, which constitutes the basis of modern string theory. Chapter 8, the last, presents remarkable new findings in quantum mechanics. Every chapter contains exercises and a list of recommended literature.Prof. Shifman has been an active participant and significant contributor in the development of the ideas presented in this book. This accounts for the historical remarks and digressions interspersed in the book, enhancing its pedagogical role. The book will serve as a comprehensive reference and textbook for all graduate students and researchers interested in modern particle physics. It will also be a useful guide for lecturers.