Author: Ralph Blumenhagen
Publisher: Springer
ISBN: 3642004504
Category : Science
Languages : en
Pages : 270
Book Description
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
Introduction to Conformal Field Theory
Author: Ralph Blumenhagen
Publisher: Springer
ISBN: 3642004504
Category : Science
Languages : en
Pages : 270
Book Description
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
Publisher: Springer
ISBN: 3642004504
Category : Science
Languages : en
Pages : 270
Book Description
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
A Mathematical Introduction to Conformal Field Theory
Author: Martin Schottenloher
Publisher: Springer Science & Business Media
ISBN: 3540706909
Category : Science
Languages : en
Pages : 153
Book Description
Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.
Publisher: Springer Science & Business Media
ISBN: 3540706909
Category : Science
Languages : en
Pages : 153
Book Description
Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.
Conformal Field Theory
Author: Philippe Francesco
Publisher: Springer Science & Business Media
ISBN: 1461222567
Category : Science
Languages : en
Pages : 908
Book Description
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 1461222567
Category : Science
Languages : en
Pages : 908
Book Description
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
Conformal Field Theory and Topology
Author: Toshitake Kohno
Publisher: American Mathematical Soc.
ISBN: 9780821821305
Category : Mathematics
Languages : en
Pages : 188
Book Description
Geometry and physics have been developed with a strong influence on each other. One of the most remarkable interactions between geometry and physics since 1980 has been an application of quantum field theory to topology and differential geometry. This book focuses on a relationship between two-dimensional quantum field theory and three-dimensional topology which has been studied intensively since the discovery of the Jones polynomial in the middle of the 1980s and Witten's invariantfor 3-manifolds derived from Chern-Simons gauge theory. An essential difficulty in quantum field theory comes from infinite-dimensional freedom of a system. Techniques dealing with such infinite-dimensional objects developed in the framework of quantum field theory have been influential in geometryas well. This book gives an accessible treatment for a rigorous construction of topological invariants originally defined as partition functions of fields on manifolds. The book is organized as follows: The Introduction starts from classical mechanics and explains basic background materials in quantum field theory and geometry. Chapter 1 presents conformal field theory based on the geometry of loop groups. Chapter 2 deals with the holonomy of conformal field theory. Chapter 3 treatsChern-Simons perturbation theory. The final chapter discusses topological invariants for 3-manifolds derived from Chern-Simons perturbation theory.
Publisher: American Mathematical Soc.
ISBN: 9780821821305
Category : Mathematics
Languages : en
Pages : 188
Book Description
Geometry and physics have been developed with a strong influence on each other. One of the most remarkable interactions between geometry and physics since 1980 has been an application of quantum field theory to topology and differential geometry. This book focuses on a relationship between two-dimensional quantum field theory and three-dimensional topology which has been studied intensively since the discovery of the Jones polynomial in the middle of the 1980s and Witten's invariantfor 3-manifolds derived from Chern-Simons gauge theory. An essential difficulty in quantum field theory comes from infinite-dimensional freedom of a system. Techniques dealing with such infinite-dimensional objects developed in the framework of quantum field theory have been influential in geometryas well. This book gives an accessible treatment for a rigorous construction of topological invariants originally defined as partition functions of fields on manifolds. The book is organized as follows: The Introduction starts from classical mechanics and explains basic background materials in quantum field theory and geometry. Chapter 1 presents conformal field theory based on the geometry of loop groups. Chapter 2 deals with the holonomy of conformal field theory. Chapter 3 treatsChern-Simons perturbation theory. The final chapter discusses topological invariants for 3-manifolds derived from Chern-Simons perturbation theory.
Conformal Field Theory
Author: Yavuz Nutku
Publisher: CRC Press
ISBN: 042998250X
Category : Science
Languages : en
Pages : 342
Book Description
This book provides an understanding of conformal field theory and its importance to both statistical mechanics and string theory. It introduces the Wess-Zumino-Novokov-Witten (WZNW) models and their current algebras, the affine Kac-Moody algebras.
Publisher: CRC Press
ISBN: 042998250X
Category : Science
Languages : en
Pages : 342
Book Description
This book provides an understanding of conformal field theory and its importance to both statistical mechanics and string theory. It introduces the Wess-Zumino-Novokov-Witten (WZNW) models and their current algebras, the affine Kac-Moody algebras.
EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions
Author: Slava Rychkov
Publisher: Springer
ISBN: 3319436260
Category : Science
Languages : en
Pages : 81
Book Description
This primer develops Conformal Field Theory (CFT) from scratch, whereby CFT is viewed as any conformally-invariant theory that describes a fixed point of a renormalization group flow in quantum field theory. The book is divided into four lectures: Lecture 1 addresses the physical foundations of conformal invariance, while Lecture 2 examines the constraints imposed by conformal symmetry on the correlation functions of local operators, presented using the so-called projective null cone – a procedure also known as the embedding formalism. In turn, Lecture 3 focuses on the radial quantization and the operator product expansion, while Lecture 4 offers a very brief introduction to the conformal bootstrap. Derived from course-based notes, these lectures are intended as a first point of entry to this topic for Master and PhD students alike.
Publisher: Springer
ISBN: 3319436260
Category : Science
Languages : en
Pages : 81
Book Description
This primer develops Conformal Field Theory (CFT) from scratch, whereby CFT is viewed as any conformally-invariant theory that describes a fixed point of a renormalization group flow in quantum field theory. The book is divided into four lectures: Lecture 1 addresses the physical foundations of conformal invariance, while Lecture 2 examines the constraints imposed by conformal symmetry on the correlation functions of local operators, presented using the so-called projective null cone – a procedure also known as the embedding formalism. In turn, Lecture 3 focuses on the radial quantization and the operator product expansion, while Lecture 4 offers a very brief introduction to the conformal bootstrap. Derived from course-based notes, these lectures are intended as a first point of entry to this topic for Master and PhD students alike.
Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
Author: Andreas Recknagel
Publisher: Cambridge University Press
ISBN: 1107511801
Category : Science
Languages : en
Pages : 349
Book Description
Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.
Publisher: Cambridge University Press
ISBN: 1107511801
Category : Science
Languages : en
Pages : 349
Book Description
Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.
Topology, Geometry and Quantum Field Theory
Author: Ulrike Luise Tillmann
Publisher: Cambridge University Press
ISBN: 9780521540490
Category : Mathematics
Languages : en
Pages : 596
Book Description
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Publisher: Cambridge University Press
ISBN: 9780521540490
Category : Mathematics
Languages : en
Pages : 596
Book Description
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Introduction to the AdS/CFT Correspondence
Author: Horaƫiu Năstase
Publisher: Cambridge University Press
ISBN: 1316352307
Category : Science
Languages : en
Pages : 457
Book Description
Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialised applications, including QCD, quark-gluon plasma and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1316352307
Category : Science
Languages : en
Pages : 457
Book Description
Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialised applications, including QCD, quark-gluon plasma and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear and condensed matter physics.
Introduction to Conformal Invariance and Its Applications to Critical Phenomena
Author: Philippe Christe
Publisher: Springer Science & Business Media
ISBN: 3540565043
Category : Science
Languages : en
Pages : 276
Book Description
The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.
Publisher: Springer Science & Business Media
ISBN: 3540565043
Category : Science
Languages : en
Pages : 276
Book Description
The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.