Chaos and Fractals

Chaos and Fractals PDF Author: David P. Feldman
Publisher: Oxford University Press, USA
ISBN: 0199566445
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.

Chaos and Fractals

Chaos and Fractals PDF Author: David P. Feldman
Publisher: Oxford University Press, USA
ISBN: 0199566445
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.

Chaos

Chaos PDF Author: Kathleen Alligood
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

An Introduction to Dynamical Systems and Chaos

An Introduction to Dynamical Systems and Chaos PDF Author: G.C. Layek
Publisher: Springer
ISBN: 8132225562
Category : Mathematics
Languages : en
Pages : 632

Get Book Here

Book Description
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

Chaos and Dynamical Systems

Chaos and Dynamical Systems PDF Author: David P. Feldman
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems PDF Author: Robert Devaney
Publisher: CRC Press
ISBN: 0429970854
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Chaos and Fractals: The Mathematics Behind the Computer Graphics

Chaos and Fractals: The Mathematics Behind the Computer Graphics PDF Author: Robert L. Devaney
Publisher: American Mathematical Soc.
ISBN: 0821801376
Category : Computers
Languages : en
Pages : 176

Get Book Here

Book Description
The terms chaos and fractals have received widespread attention in recent years. The alluring computer graphics images associated with these terms have heightened interest among scientists in these ideas. This volume contains the introductory survey lectures delivered in the American Mathematical Society Short Course, Chaos and Fractals: The Mathematics Behind the Computer Graphics, on August 6-7, 1988, given in conjunction with the AMS Centennial Meeting in Providence, Rhode Island. In his overview, Robert L. Devaney introduces such key topics as hyperbolicity, the period doubling route to chaos, chaotic dynamics, symbolic dynamics and the horseshoe, and the appearance of fractals as the chaotic set for a dynamical system. Linda Keen and Bodil Branner discuss the Mandelbrot set and Julia sets associated to the complex quadratic family z -> z2 + c. Kathleen T. Alligood, James A. Yorke, and Philip J. Holmes discuss some of these topics in higher dimensional settings, including the Smale horseshoe and strange attractors. Jenny Harrison and Michael F. Barnsley give an overview of fractal geometry and its applications. -- from dust jacket.

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems PDF Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
ISBN: 0821848895
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Introduction to Chaos, Fractals and Dynamical Systems

Introduction to Chaos, Fractals and Dynamical Systems PDF Author: Phil Laplante
Publisher: World Scientific Publishing Company
ISBN: 9789811273247
Category : Chaotic behavior in systems
Languages : en
Pages : 0

Get Book Here

Book Description
This book offers a fun and enriching introduction to chaos theory, fractals and dynamical systems, and on the applications of fractals to computer generated graphics and image compression. Introduction to Chaos, Fractals and Dynamical Systems particularly focuses on natural and human phenomenon that can be modeled as fractals, using simple examples to explain the theory of chaos and how it affects all of us. Then, using straightforward mathematic and intuitive descriptions, computer generated graphics and photographs of natural scenes are used to illustrate the beauty of fractals and their importance in our world. Finally, the concept of Dynamical Systems, that is, time-dependent systems, the foundation of Chaos and Fractal, is introduced. Everyday examples are again used to illustrate concepts, and the importance of understanding how these vital systems affect our lives. Throughout the fascinating history of the evolution of chaos theory, fractals and dynamical systems is presented, along with brief introductions to the scientists, mathematicians and engineers who created this knowledge. Introduction to Chaos, Fractals and Dynamical Systems contains ample mathematical definitions, representations, discussions and exercises, so that this book can be used as primary or secondary source in home schooling environments. The book is suitable for homeschooling as a focused course on the subject matter or as a classroom supplement for a variety of courses at the late junior high or early high-school level. For example, in addition to a standalone course on Chaos, Fractals and Dynamical Systems (or similar title), this book could be used with the following courses: Precalculus Geometry Computer programming (e.g. Rust, C, C++, Python, Java, Pascal) Computer graphics The text can also be used in conjunction with mathematics courses for undergraduates for non-science majors. The book can also be used for informal and lively family study and discussion. For each chapter, exercises and things to do are included. These activities range from simple computational tasks to more elaborate computer projects, related activities, biographical research and writing assignments.

Chaos and Fractals

Chaos and Fractals PDF Author: C.A. Pickover
Publisher: Elsevier
ISBN: 0080528864
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
These days computer-generated fractal patterns are everywhere, from squiggly designs on computer art posters to illustrations in the most serious of physics journals. Interest continues to grow among scientists and, rather surprisingly, artists and designers. This book provides visual demonstrations of complicated and beautiful structures that can arise in systems, based on simple rules. It also presents papers on seemingly paradoxical combinations of randomness and structure in systems of mathematical, physical, biological, electrical, chemical, and artistic interest. Topics include: iteration, cellular automata, bifurcation maps, fractals, dynamical systems, patterns of nature created through simple rules, and aesthetic graphics drawn from the universe of mathematics and art.Chaos and Fractals is divided into six parts: Geometry and Nature; Attractors; Cellular Automata, Gaskets, and Koch Curves; Mandelbrot, Julia and Other Complex Maps; Iterated Function Systems; and Computer Art.Additionally, information on the latest practical applications of fractals and on the use of fractals in commercial products such as the antennas and reaction vessels is presented. In short, fractals are increasingly finding application in practical products where computer graphics and simulations are integral to the design process. Each of the six sections has an introduction by the editor including the latest research, references, and updates in the field. This book is enhanced with numerous color illustrations, a comprehensive index, and the many computer program examples encourage reader involvement.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.