Introduction to Biomedical Data Science

Introduction to Biomedical Data Science PDF Author: Robert Hoyt
Publisher: Lulu.com
ISBN: 179476173X
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.

Introduction to Biomedical Data Science

Introduction to Biomedical Data Science PDF Author: Robert Hoyt
Publisher: Lulu.com
ISBN: 179476173X
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.

An Introduction to Biomedical Science in Professional and Clinical Practice

An Introduction to Biomedical Science in Professional and Clinical Practice PDF Author: Sarah J. Pitt
Publisher: John Wiley & Sons
ISBN: 111868771X
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Biomedical Science in Professional and Clinical Practice is essential reading for all trainee biomedical scientists looking for an introduction to the biomedical science profession whether they are undergraduates following an accredited biomedical sciences BSc, graduate trainees or experienced staff with overseas qualifications. This book guides trainees through the subjects, which they need to understand to meet the standards required by the Health Professions Council for state registration. These include professional topics, laws and guidelines governing clinical pathology, basic laboratory techniques and an overview of each pathology discipline. It helps trainees at any stage of training and in any pathology discipline(s) to think creatively about how to gather evidence of their understanding and professional competence. By referring to specialist sources of information in each area, it helps students to explore particular topics in more depth and to keep up to date with professional and legal changes. It is also of value to any Training Officers who are looking for ideas while planning a programme of training for a trainee biomedical scientist. The book includes basic principles of working in the pathology laboratory including laws and regulations, which must be observed, such as health and safety, data protection and equal opportunities laws and guidelines. Practical exercises are included throughout the book with examples of coursework, suggestions for further exercises and self -assessment. Summary boxes of key facts are clearly set out in each chapter and ideas for group/tutorial discussions are also provided to enhance student understanding.

Data Analysis for the Life Sciences with R

Data Analysis for the Life Sciences with R PDF Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1498775861
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.

Biomedical Measurement Systems and Data Science

Biomedical Measurement Systems and Data Science PDF Author: Michael Insana
Publisher: Cambridge University Press
ISBN: 1316832767
Category : Technology & Engineering
Languages : en
Pages : 405

Get Book Here

Book Description
Discover the fundamental principles of biomedical measurement design and performance evaluation with this hands-on guide. Whether you develop measurement instruments or use them in novel ways, this practical text will prepare you to be an effective generator and consumer of biomedical data. Designed for both classroom instruction and self-study, it explains how information is encoded into recorded data and can be extracted and displayed in an accessible manner. Describes and integrates experimental design, performance assessment, classification, and system modelling. Combines mathematical concepts with computational models, providing the tools needed to answer advanced biomedical questions. Includes MATLAB® scripts throughout to help readers model all types of biomedical systems, and contains numerous homework problems, with a solutions manual available online. This is an essential text for advanced undergraduate and graduate students in bioengineering, electrical and computer engineering, computer science, medical physics, and anyone preparing for a career in biomedical sciences and engineering.

Computational Learning Approaches to Data Analytics in Biomedical Applications

Computational Learning Approaches to Data Analytics in Biomedical Applications PDF Author: Khalid Al-Jabery
Publisher: Academic Press
ISBN: 0128144831
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering PDF Author: John Enderle
Publisher: Elsevier
ISBN: 0080473148
Category : Science
Languages : en
Pages : 1141

Get Book Here

Book Description
Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics.* 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Introduction to Biomedical Instrumentation

Introduction to Biomedical Instrumentation PDF Author: Barbara Christe
Publisher: Cambridge University Press
ISBN: 1139477536
Category : Technology & Engineering
Languages : en
Pages : 245

Get Book Here

Book Description
This book is designed to introduce the reader to the fundamental information necessary for work in the clinical setting, supporting the technology used in patient care. Beginning biomedical equipment technologists can use this book to obtain a working vocabulary and elementary knowledge of the industry. Content is presented through the inclusion of a wide variety of medical instrumentation, with an emphasis on generic devices and classifications; individual manufacturers are explained only when the market is dominated by a particular unit. Designed for the reader with a fundamental understanding of anatomy, physiology, and medical terminology appropriate for their role in the health care field and assumes the reader's understanding of electronic concepts, including voltage, current, resistance, impedance, analog and digital signals, and sensors. The material covered will assist the reader in the development of his or her role as a knowledgeable and effective member of the patient care team.

Predictive Modeling in Biomedical Data Mining and Analysis

Predictive Modeling in Biomedical Data Mining and Analysis PDF Author: Sudipta Roy
Publisher: Academic Press
ISBN: 0323914454
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
Predictive Modeling in Biomedical Data Mining and Analysis presents major technical advancements and research findings in the field of machine learning in biomedical image and data analysis. The book examines recent technologies and studies in preclinical and clinical practice in computational intelligence. The authors present leading-edge research in the science of processing, analyzing and utilizing all aspects of advanced computational machine learning in biomedical image and data analysis. As the application of machine learning is spreading to a variety of biomedical problems, including automatic image segmentation, image classification, disease classification, fundamental biological processes, and treatments, this is an ideal reference. Machine Learning techniques are used as predictive models for many types of applications, including biomedical applications. These techniques have shown impressive results across a variety of domains in biomedical engineering research. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood, hence the need for new resources and information. - Includes predictive modeling algorithms for both Supervised Learning and Unsupervised Learning for medical diagnosis, data summarization and pattern identification - Offers complete coverage of predictive modeling in biomedical applications, including data visualization, information retrieval, data mining, image pre-processing and segmentation, mathematical models and deep neural networks - Provides readers with leading-edge coverage of biomedical data processing, including high dimension data, data reduction, clinical decision-making, deep machine learning in large data sets, multimodal, multi-task, and transfer learning, as well as machine learning with Internet of Biomedical Things applications

Principles of Biomedical Informatics

Principles of Biomedical Informatics PDF Author: Ira J. Kalet
Publisher: Academic Press
ISBN: 0123914620
Category : Business & Economics
Languages : en
Pages : 709

Get Book Here

Book Description
This second edition of a pioneering technical work in biomedical informatics provides a very readable treatment of the deep computational ideas at the foundation of the field. Principles of Biomedical Informatics, 2nd Edition is radically reorganized to make it especially useable as a textbook for courses that move beyond the standard introductory material. It includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as:• tree structured data, interval trees, and time-oriented medical data and their use• On Line Application Processing (OLAP), an old database idea that is only recently coming of age and finding surprising importance in biomedical informatics• a discussion of nursing knowledge and an example of encoding nursing advice in a rule-based system• X-ray physics and algorithms for cross-sectional medical image reconstruction, recognizing that this area was one of the most central to the origin of biomedical computing• an introduction to Markov processes, and• an outline of the elements of a hospital IT security program, focusing on fundamental ideas rather than specifics of system vulnerabilities or specific technologies. It is simultaneously a unified description of the core research concept areas of biomedical data and knowledge representation, biomedical information access, biomedical decision-making, and information and technology use in biomedical contexts, and a pre-eminent teaching reference for the growing number of healthcare and computing professionals embracing computation in health-related fields. As in the first edition, it includes many worked example programs in Common LISP, the most powerful and accessible modern language for advanced biomedical concept representation and manipulation. The text also includes humor, history, and anecdotal material to balance the mathematically and computationally intensive development in many of the topic areas. The emphasis, as in the first edition, is on ideas and methods that are likely to be of lasting value, not just the popular topics of the day. Ira Kalet is Professor Emeritus of Radiation Oncology, and of Biomedical Informatics and Medical Education, at the University of Washington. Until retiring in 2011 he was also an Adjunct Professor in Computer Science and Engineering, and Biological Structure. From 2005 to 2010 he served as IT Security Director for the University of Washington School of Medicine and its major teaching hospitals. He has been a member of the American Medical Informatics Association since 1990, and an elected Fellow of the American College of Medical Informatics since 2011. His research interests include simulation systems for design of radiation treatment for cancer, software development methodology, and artificial intelligence applications to medicine, particularly expert systems, ontologies and modeling. - Develops principles and methods for representing biomedical data, using information in context and in decision making, and accessing information to assist the medical community in using data to its full potential - Provides a series of principles for expressing biomedical data and ideas in a computable form to integrate biological, clinical, and public health applications - Includes a discussion of user interfaces, interactive graphics, and knowledge resources and reference material on programming languages to provide medical informatics programmers with the technical tools to develop systems