Author: John F. Lucas
Publisher: Rowman & Littlefield
ISBN: 9780912675732
Category : Mathematics
Languages : en
Pages : 400
Book Description
This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
An Introduction to Abstract Mathematics
Author: Robert J. Bond
Publisher: Waveland Press
ISBN: 1478608056
Category : Mathematics
Languages : en
Pages : 344
Book Description
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
Publisher: Waveland Press
ISBN: 1478608056
Category : Mathematics
Languages : en
Pages : 344
Book Description
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
Linear Algebra As An Introduction To Abstract Mathematics
Author: Bruno Nachtergaele
Publisher: World Scientific Publishing Company
ISBN: 9814723797
Category : Mathematics
Languages : en
Pages : 209
Book Description
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Publisher: World Scientific Publishing Company
ISBN: 9814723797
Category : Mathematics
Languages : en
Pages : 209
Book Description
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Introduction to Proof in Abstract Mathematics
Author: Andrew Wohlgemuth
Publisher: Courier Corporation
ISBN: 0486141683
Category : Mathematics
Languages : en
Pages : 385
Book Description
The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Publisher: Courier Corporation
ISBN: 0486141683
Category : Mathematics
Languages : en
Pages : 385
Book Description
The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Introduction to Abstract Mathematics
Author: John F. Lucas
Publisher: Rowman & Littlefield
ISBN: 9780912675732
Category : Mathematics
Languages : en
Pages : 400
Book Description
This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
Publisher: Rowman & Littlefield
ISBN: 9780912675732
Category : Mathematics
Languages : en
Pages : 400
Book Description
This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
Introductory Concepts for Abstract Mathematics
Author: Kenneth E. Hummel
Publisher: CRC Press
ISBN: 1482285649
Category : Mathematics
Languages : en
Pages : 345
Book Description
Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs. Introductory Concepts for Abstract Mathematics helps readers bridge that gap. It teaches them to work with abstract ideas and develop a facility with definitions, theorems, and proofs. They learn logical principles, and to justify arguments not by what seems right, but by strict adherence to principles of logic and proven mathematical assertions - and they learn to write clearly in the language of mathematics The author achieves these goals through a methodical treatment of set theory, relations and functions, and number systems, from the natural to the real. He introduces topics not usually addressed at this level, including the remarkable concepts of infinite sets and transfinite cardinal numbers Introductory Concepts for Abstract Mathematics takes readers into the world beyond calculus and ensures their voyage to that world is successful. It imparts a feeling for the beauty of mathematics and its internal harmony, and inspires an eagerness and increased enthusiasm for moving forward in the study of mathematics.
Publisher: CRC Press
ISBN: 1482285649
Category : Mathematics
Languages : en
Pages : 345
Book Description
Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs. Introductory Concepts for Abstract Mathematics helps readers bridge that gap. It teaches them to work with abstract ideas and develop a facility with definitions, theorems, and proofs. They learn logical principles, and to justify arguments not by what seems right, but by strict adherence to principles of logic and proven mathematical assertions - and they learn to write clearly in the language of mathematics The author achieves these goals through a methodical treatment of set theory, relations and functions, and number systems, from the natural to the real. He introduces topics not usually addressed at this level, including the remarkable concepts of infinite sets and transfinite cardinal numbers Introductory Concepts for Abstract Mathematics takes readers into the world beyond calculus and ensures their voyage to that world is successful. It imparts a feeling for the beauty of mathematics and its internal harmony, and inspires an eagerness and increased enthusiasm for moving forward in the study of mathematics.
An Invitation to Abstract Mathematics
Author: Béla Bajnok
Publisher: Springer Nature
ISBN: 3030561747
Category : Mathematics
Languages : en
Pages : 443
Book Description
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Publisher: Springer Nature
ISBN: 3030561747
Category : Mathematics
Languages : en
Pages : 443
Book Description
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Introduction to Abstract Algebra
Author: Jonathan D. H. Smith
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Explorations in Analysis, Topology, and Dynamics: An Introduction to Abstract Mathematics
Author: Alejandro Uribe A.
Publisher: American Mathematical Soc.
ISBN: 1470452707
Category : Education
Languages : en
Pages : 196
Book Description
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigor as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g., of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
Publisher: American Mathematical Soc.
ISBN: 1470452707
Category : Education
Languages : en
Pages : 196
Book Description
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigor as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g., of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
Introduction to Abstract Algebra
Author: J. Strother Moore
Publisher: Academic Press
ISBN: 0080924883
Category : Mathematics
Languages : en
Pages : 304
Book Description
Introduction to Abstract Algebra provides insight into the methods of abstract algebra. This book provides information pertinent to the fundamental concepts of abstract algebra. Organized into five chapters, this book begins with an overview of the study of natural numbers that are used historically for the purpose of counting the objects in different assemblages. This text then examines the concepts of set and elements of a set. Other chapters contain an intuitive survey of the different kinds of real numbers, with the inclusion of many very important results on integers. This book presents as well a brief survey of algebraic systems from the trivial sets to the more highly structures groups, with emphasis on the elementary properties of groups. The final chapter deals with the simple development of complex numbers. This book is intended to be suitable for students in abstract algebra.
Publisher: Academic Press
ISBN: 0080924883
Category : Mathematics
Languages : en
Pages : 304
Book Description
Introduction to Abstract Algebra provides insight into the methods of abstract algebra. This book provides information pertinent to the fundamental concepts of abstract algebra. Organized into five chapters, this book begins with an overview of the study of natural numbers that are used historically for the purpose of counting the objects in different assemblages. This text then examines the concepts of set and elements of a set. Other chapters contain an intuitive survey of the different kinds of real numbers, with the inclusion of many very important results on integers. This book presents as well a brief survey of algebraic systems from the trivial sets to the more highly structures groups, with emphasis on the elementary properties of groups. The final chapter deals with the simple development of complex numbers. This book is intended to be suitable for students in abstract algebra.
An Introduction to Abstract Algebra
Author: Dr Anuradha Gupta
Publisher: Sultan Chand & Sons
ISBN: 8195407188
Category : Mathematics
Languages : en
Pages : 14
Book Description
This book on Abstract Algebra is intended for one or two semesters of B.Sc. (Hons.) and B.A. (Prog.) of University of Delhi and other Universities of India. The book is written in simple language to make the students understand various topics in Abstract Algebra in an easier way. The examples and exercises of the book are meticulously crafted and honed to meet the need of the students who are keen to know about Abstract Algebra. Starting from Set Theory and covering the topics on Groups, Rings and Vector Spaces, the book provides the students a deep study of Abstract Algebra. The book ‘Abstract Algebra’ combines the theory, examples with exercises on the concepts related to the topics in Abstract Algebra.
Publisher: Sultan Chand & Sons
ISBN: 8195407188
Category : Mathematics
Languages : en
Pages : 14
Book Description
This book on Abstract Algebra is intended for one or two semesters of B.Sc. (Hons.) and B.A. (Prog.) of University of Delhi and other Universities of India. The book is written in simple language to make the students understand various topics in Abstract Algebra in an easier way. The examples and exercises of the book are meticulously crafted and honed to meet the need of the students who are keen to know about Abstract Algebra. Starting from Set Theory and covering the topics on Groups, Rings and Vector Spaces, the book provides the students a deep study of Abstract Algebra. The book ‘Abstract Algebra’ combines the theory, examples with exercises on the concepts related to the topics in Abstract Algebra.