Author: Ulrich L. Rohde
Publisher: John Wiley & Sons
ISBN: 1118130332
Category : Mathematics
Languages : en
Pages : 371
Book Description
An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
Introduction to Integral Calculus
Author: Ulrich L. Rohde
Publisher: John Wiley & Sons
ISBN: 1118130332
Category : Mathematics
Languages : en
Pages : 371
Book Description
An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
Publisher: John Wiley & Sons
ISBN: 1118130332
Category : Mathematics
Languages : en
Pages : 371
Book Description
An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
An Introduction to the Study of Integral Equations
Author: Maxime Bôcher
Publisher:
ISBN:
Category : Functions
Languages : en
Pages : 84
Book Description
Publisher:
ISBN:
Category : Functions
Languages : en
Pages : 84
Book Description
Measure and Integral
Author: Richard Wheeden
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
An Introduction to the Study of Integral Equations
Author: Maxime Bocher
Publisher: Cambridge University Press
ISBN: 1107493498
Category : History
Languages : en
Pages : 81
Book Description
First published in 1914, this book was written to provide readers with 'the main portions of the theory of integral equations in a readable and, at the same time, accurate form, following roughly the lines of historical development'. Textual notes are incorporated throughout.
Publisher: Cambridge University Press
ISBN: 1107493498
Category : History
Languages : en
Pages : 81
Book Description
First published in 1914, this book was written to provide readers with 'the main portions of the theory of integral equations in a readable and, at the same time, accurate form, following roughly the lines of historical development'. Textual notes are incorporated throughout.
Techniques of Functional Analysis for Differential and Integral Equations
Author: Paul Sacks
Publisher: Academic Press
ISBN: 0128114576
Category : Mathematics
Languages : en
Pages : 322
Book Description
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Publisher: Academic Press
ISBN: 0128114576
Category : Mathematics
Languages : en
Pages : 322
Book Description
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Integral Equations
Author: F. G. Tricomi
Publisher: Courier Corporation
ISBN: 0486158306
Category : Mathematics
Languages : en
Pages : 256
Book Description
Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
Publisher: Courier Corporation
ISBN: 0486158306
Category : Mathematics
Languages : en
Pages : 256
Book Description
Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
The Classical Theory of Integral Equations
Author: Stephen M. Zemyan
Publisher: Springer Science & Business Media
ISBN: 0817683496
Category : Mathematics
Languages : en
Pages : 350
Book Description
The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Publisher: Springer Science & Business Media
ISBN: 0817683496
Category : Mathematics
Languages : en
Pages : 350
Book Description
The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Introduction to Integral Equations with Applications
Author: Abdul J. Jerri
Publisher: John Wiley & Sons
ISBN: 9780471317340
Category : Mathematics
Languages : en
Pages : 458
Book Description
From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliquées. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.
Publisher: John Wiley & Sons
ISBN: 9780471317340
Category : Mathematics
Languages : en
Pages : 458
Book Description
From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliquées. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.
A Course on Integral Equations
Author: A. C. Pipkin
Publisher:
ISBN:
Category : Integral equations
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Integral equations
Languages : en
Pages : 296
Book Description
Integral Equations
Author: Jirō Kondō
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 484
Book Description
Integral equations arise in a very wide variety of mathematical and scientific problems. This textbook is devoted to the study and solution of such equations and it simultaneously provides a unified treatment of the theory together with a description of the range of methods for their solution. Professor Kondo's wide experience in science and engineering ensures that the many applications presented here are both up-to-date and relevant to current problems. Throughout, a wide selection of exercises will help further a student's understanding of the subject as well as give them a familiarity with the most important methods of solution. Consequently, this book will be ideal for final year undergraduates and postgraduates studying integral equations for the first time. All the main classes of integral equations are covered, including Volterra, Fredholm, and nonlinear integral equations. The close relationship with differential equations is also explored in order that students develop an understanding of the relationship between the two classes of equation and their relative merits for solving problems.
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 484
Book Description
Integral equations arise in a very wide variety of mathematical and scientific problems. This textbook is devoted to the study and solution of such equations and it simultaneously provides a unified treatment of the theory together with a description of the range of methods for their solution. Professor Kondo's wide experience in science and engineering ensures that the many applications presented here are both up-to-date and relevant to current problems. Throughout, a wide selection of exercises will help further a student's understanding of the subject as well as give them a familiarity with the most important methods of solution. Consequently, this book will be ideal for final year undergraduates and postgraduates studying integral equations for the first time. All the main classes of integral equations are covered, including Volterra, Fredholm, and nonlinear integral equations. The close relationship with differential equations is also explored in order that students develop an understanding of the relationship between the two classes of equation and their relative merits for solving problems.