Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599731258
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid.An interesting feature of this book is that introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.
Interval Groupoids
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599731258
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid.An interesting feature of this book is that introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.
Publisher: Infinite Study
ISBN: 1599731258
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid.An interesting feature of this book is that introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.
Subset Interval Groupoids
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599732262
Category :
Languages : en
Pages : 248
Book Description
Publisher: Infinite Study
ISBN: 1599732262
Category :
Languages : en
Pages : 248
Book Description
Groupoids of Type I and II Using [0, n)
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599732734
Category : Mathematics
Languages : en
Pages : 180
Book Description
Study of algebraic structures built using [0, n) looks to be one of interesting and innovative research. Here we define two types of groupoids using [0, n), both of them are of infinite order. It is an open conjecture to find whether this new class of groupoids satisfy any of the special identities like Moufang identity or Bol identity and so on.
Publisher: Infinite Study
ISBN: 1599732734
Category : Mathematics
Languages : en
Pages : 180
Book Description
Study of algebraic structures built using [0, n) looks to be one of interesting and innovative research. Here we define two types of groupoids using [0, n), both of them are of infinite order. It is an open conjecture to find whether this new class of groupoids satisfy any of the special identities like Moufang identity or Bol identity and so on.
Theory of Abel Grassmann's Groupoids
Author: Madad Khan, Florentin Smarandache, Saima Anis
Publisher: Infinite Study
ISBN: 1599733471
Category : Fuzzy sets
Languages : en
Pages : 210
Book Description
We extend now for the first time the AG-groupoid to the Neutrosophic AG-groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic structure that lies between a neutrosophic groupoid and a neutrosophic commutative semigroup.
Publisher: Infinite Study
ISBN: 1599733471
Category : Fuzzy sets
Languages : en
Pages : 210
Book Description
We extend now for the first time the AG-groupoid to the Neutrosophic AG-groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic structure that lies between a neutrosophic groupoid and a neutrosophic commutative semigroup.
Interval Algebraic Bistructures
Author: W.B. Vasantha Kandansamy, Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599731401
Category :
Languages : en
Pages : 210
Book Description
Publisher: Infinite Study
ISBN: 1599731401
Category :
Languages : en
Pages : 210
Book Description
IVI-octahedron sets and their application to groupoids
Author: J. H. Kim
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 39
Book Description
In this paper, we introduce the concepts of (internal, external) IVI-octahedron sets, and study some of their properties and give some examples.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 39
Book Description
In this paper, we introduce the concepts of (internal, external) IVI-octahedron sets, and study some of their properties and give some examples.
Non-Associative Algebraic Structures on MOD Planes
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599733684
Category : Algebras, Linear
Languages : en
Pages : 212
Book Description
In this book authors for the first time construct non-associative algebraic structures on the MOD planes. Using MOD planes we can construct infinite number of groupoids for a fixed m and all these MOD groupoids are of infinite cardinality. Special identities satisfied by these MOD groupoids build using the six types of MOD planes are studied. Further, the new concept of special pseudo zero of these groupoids are defined, described and developed. Also conditions for these MOD groupoids to have special elements like idempotent, special pseudo zero divisors and special pseudo nilpotent are obtained. Further non-associative MOD rings are constructed using MOD groupoids and commutative rings with unit. That is the MOD groupoid rings gives infinitely many non-associative ring. These rings are analysed for substructures and special elements. This study is new and innovative and several open problems are suggested.
Publisher: Infinite Study
ISBN: 1599733684
Category : Algebras, Linear
Languages : en
Pages : 212
Book Description
In this book authors for the first time construct non-associative algebraic structures on the MOD planes. Using MOD planes we can construct infinite number of groupoids for a fixed m and all these MOD groupoids are of infinite cardinality. Special identities satisfied by these MOD groupoids build using the six types of MOD planes are studied. Further, the new concept of special pseudo zero of these groupoids are defined, described and developed. Also conditions for these MOD groupoids to have special elements like idempotent, special pseudo zero divisors and special pseudo nilpotent are obtained. Further non-associative MOD rings are constructed using MOD groupoids and commutative rings with unit. That is the MOD groupoid rings gives infinitely many non-associative ring. These rings are analysed for substructures and special elements. This study is new and innovative and several open problems are suggested.
Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids
Author: Ruy Exel
Publisher: Springer Nature
ISBN: 3031055136
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian–Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian–Renault theory to a much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.
Publisher: Springer Nature
ISBN: 3031055136
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian–Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian–Renault theory to a much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.
Hyperbolic Groupoids and Duality
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Soc.
ISBN: 1470415445
Category : Mathematics
Languages : en
Pages : 120
Book Description
The author introduces a notion of hyperbolic groupoids, generalizing the notion of a Gromov hyperbolic group. Examples of hyperbolic groupoids include actions of Gromov hyperbolic groups on their boundaries, pseudogroups generated by expanding self-coverings, natural pseudogroups acting on leaves of stable (or unstable) foliation of an Anosov diffeomorphism, etc. The author describes a duality theory for hyperbolic groupoids. He shows that for every hyperbolic groupoid G there is a naturally defined dual groupoid G⊤ acting on the Gromov boundary of a Cayley graph of G. The groupoid G⊤ is also hyperbolic and such that (G⊤)⊤ is equivalent to G. Several classes of examples of hyperbolic groupoids and their applications are discussed.
Publisher: American Mathematical Soc.
ISBN: 1470415445
Category : Mathematics
Languages : en
Pages : 120
Book Description
The author introduces a notion of hyperbolic groupoids, generalizing the notion of a Gromov hyperbolic group. Examples of hyperbolic groupoids include actions of Gromov hyperbolic groups on their boundaries, pseudogroups generated by expanding self-coverings, natural pseudogroups acting on leaves of stable (or unstable) foliation of an Anosov diffeomorphism, etc. The author describes a duality theory for hyperbolic groupoids. He shows that for every hyperbolic groupoid G there is a naturally defined dual groupoid G⊤ acting on the Gromov boundary of a Cayley graph of G. The groupoid G⊤ is also hyperbolic and such that (G⊤)⊤ is equivalent to G. Several classes of examples of hyperbolic groupoids and their applications are discussed.
Groupoids in Analysis, Geometry, and Physics
Author: Arlan Ramsay
Publisher: American Mathematical Soc.
ISBN: 0821820427
Category : Mathematics
Languages : en
Pages : 208
Book Description
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.
Publisher: American Mathematical Soc.
ISBN: 0821820427
Category : Mathematics
Languages : en
Pages : 208
Book Description
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.