Author: G. E. Rehfeldt
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 24
Book Description
A series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.
Interspecific and Intraspecific Variation in Picea Engelmannii and Its Congeneric Cohorts
Author: G. E. Rehfeldt
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 24
Book Description
A series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 24
Book Description
A series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.
General Technical Report RMRS
Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 40
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 40
Book Description
Montana Department of Natural Resources and Conservation, Forested State Trust Lands, Habitat Conservation Plan
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 824
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 824
Book Description
Canadian Journal of Forest Research
Author:
Publisher:
ISBN:
Category : Forest genetics
Languages : en
Pages : 566
Book Description
Publisher:
ISBN:
Category : Forest genetics
Languages : en
Pages : 566
Book Description
Canadian Journal of Botany
Author:
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 388
Book Description
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 388
Book Description
New Publications
Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 106
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 106
Book Description
Advances in Threat Assessment and Their Application to Forest and Rangeland Management
Author: John M. Pye
Publisher:
ISBN:
Category : Ecological assessment (Biology)
Languages : en
Pages : 266
Book Description
In July 2006, more than 170 researchers and managers from the United States, Canada, and Mexico convened in Boulder, Colorado, to discuss the state of the science in environmental threat assessment. This two-volume general technical report compiles peer-reviewed papers that were among those presented during the 3-day conference. Papers are organized by four broad topical sections--Land, Air and Water, Fire, and Pests/Biota--and are divided into syntheses and case studies. Land topics include discussions of forest land conversion and soil quality as well as investigations of species' responses to climate change. Air and water topics include discussions of forest vulnerability to severe weather and storm damage modeling. Fire topics include discussions of wildland arson and wildfire risk management as well as how people precieve wildfire risk and uncertainty. Pests/biota topics include discussions of risk mapping and probabilistic risk assessments as well as investigations of individual threats, including the southern pine beetle and Phytophora alni. Ultimately, this publication will foster exchange and collaboration between those who develop knowledge and tools for threat assessment and those who are responsible for managing forests and rangelands.
Publisher:
ISBN:
Category : Ecological assessment (Biology)
Languages : en
Pages : 266
Book Description
In July 2006, more than 170 researchers and managers from the United States, Canada, and Mexico convened in Boulder, Colorado, to discuss the state of the science in environmental threat assessment. This two-volume general technical report compiles peer-reviewed papers that were among those presented during the 3-day conference. Papers are organized by four broad topical sections--Land, Air and Water, Fire, and Pests/Biota--and are divided into syntheses and case studies. Land topics include discussions of forest land conversion and soil quality as well as investigations of species' responses to climate change. Air and water topics include discussions of forest vulnerability to severe weather and storm damage modeling. Fire topics include discussions of wildland arson and wildfire risk management as well as how people precieve wildfire risk and uncertainty. Pests/biota topics include discussions of risk mapping and probabilistic risk assessments as well as investigations of individual threats, including the southern pine beetle and Phytophora alni. Ultimately, this publication will foster exchange and collaboration between those who develop knowledge and tools for threat assessment and those who are responsible for managing forests and rangelands.
Conservation Biology for All
Author: Navjot S. Sodhi
Publisher: OUP Oxford
ISBN: 0191574252
Category : Science
Languages : en
Pages : 368
Book Description
Conservation Biology for All provides cutting-edge but basic conservation science to a global readership. A series of authoritative chapters have been written by the top names in conservation biology with the principal aim of disseminating cutting-edge conservation knowledge as widely as possible. Important topics such as balancing conversion and human needs, climate change, conservation planning, designing and analyzing conservation research, ecosystem services, endangered species management, extinctions, fire, habitat loss, and invasive species are covered. Numerous textboxes describing additional relevant material or case studies are also included. The global biodiversity crisis is now unstoppable; what can be saved in the developing world will require an educated constituency in both the developing and developed world. Habitat loss is particularly acute in developing countries, which is of special concern because it tends to be these locations where the greatest species diversity and richest centres of endemism are to be found. Sadly, developing world conservation scientists have found it difficult to access an authoritative textbook, which is particularly ironic since it is these countries where the potential benefits of knowledge application are greatest. There is now an urgent need to educate the next generation of scientists in developing countries, so that they are in a better position to protect their natural resources.
Publisher: OUP Oxford
ISBN: 0191574252
Category : Science
Languages : en
Pages : 368
Book Description
Conservation Biology for All provides cutting-edge but basic conservation science to a global readership. A series of authoritative chapters have been written by the top names in conservation biology with the principal aim of disseminating cutting-edge conservation knowledge as widely as possible. Important topics such as balancing conversion and human needs, climate change, conservation planning, designing and analyzing conservation research, ecosystem services, endangered species management, extinctions, fire, habitat loss, and invasive species are covered. Numerous textboxes describing additional relevant material or case studies are also included. The global biodiversity crisis is now unstoppable; what can be saved in the developing world will require an educated constituency in both the developing and developed world. Habitat loss is particularly acute in developing countries, which is of special concern because it tends to be these locations where the greatest species diversity and richest centres of endemism are to be found. Sadly, developing world conservation scientists have found it difficult to access an authoritative textbook, which is particularly ironic since it is these countries where the potential benefits of knowledge application are greatest. There is now an urgent need to educate the next generation of scientists in developing countries, so that they are in a better position to protect their natural resources.
Seedling Ecology and Evolution
Author: Mary Allessio Leck
Publisher: Cambridge University Press
ISBN: 0521873053
Category : Science
Languages : en
Pages : 514
Book Description
Seedlings are highly sensitive to their environment. After seeds, they typically suffer the highest mortality of any life history stage. This book provides a comprehensive exploration of the seedling stage of the plant life cycle. It considers the importance of seedlings in plant communities; environmental factors with special impact on seedlings; the morphological and physiological diversity of seedlings including mycorrhizae; the relationship of the seedling with other life stages; seedling evolution; and seedlings in human altered ecosystems, including deserts, tropical rainforests, and habitat restoration projects. The diversity of seedlings is portrayed by including specialised groups like orchids, bromeliads, and parasitic and carnivorous plants. Discussions of physiology, morphology, evolution and ecology are brought together to focus on how and why seedlings are successful. This important text sets the stage for future research and is valuable to graduate students and researchers in plant ecology, botany, agriculture and conservation.
Publisher: Cambridge University Press
ISBN: 0521873053
Category : Science
Languages : en
Pages : 514
Book Description
Seedlings are highly sensitive to their environment. After seeds, they typically suffer the highest mortality of any life history stage. This book provides a comprehensive exploration of the seedling stage of the plant life cycle. It considers the importance of seedlings in plant communities; environmental factors with special impact on seedlings; the morphological and physiological diversity of seedlings including mycorrhizae; the relationship of the seedling with other life stages; seedling evolution; and seedlings in human altered ecosystems, including deserts, tropical rainforests, and habitat restoration projects. The diversity of seedlings is portrayed by including specialised groups like orchids, bromeliads, and parasitic and carnivorous plants. Discussions of physiology, morphology, evolution and ecology are brought together to focus on how and why seedlings are successful. This important text sets the stage for future research and is valuable to graduate students and researchers in plant ecology, botany, agriculture and conservation.
Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.
Author: Eustaquio Gil-PelegrÃn
Publisher: Springer
ISBN: 331969099X
Category : Science
Languages : en
Pages : 544
Book Description
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
Publisher: Springer
ISBN: 331969099X
Category : Science
Languages : en
Pages : 544
Book Description
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.