Author: Hisao Hayakawa
Publisher: Springer Science & Business Media
ISBN: 4431681957
Category : Science
Languages : en
Pages : 1086
Book Description
Five years have passed since the breakthrough in the critical temperature for superconductors. During this period, many superconducting materials have been discovered and developed, and our knowledge of the physical and other properties of oxide superconductors has deepened through extensive and intensive research. This knowledge has advanced superconductivity science and technology from the initial questioning stage to a more developed but still uncertain second stage where research activity in superconductivity now overlaps with fields of application. Generally speaking, science resonates with technology. Science not only complements but also competes with or stimulates technology. New scientific knowledge has triggered the second technological research stage. Much progress has been made in the development of practical devices, encouraging the application of superconductors in areas such as human levitation, a high speed levitated bearing, large current transforming leads, and high frequency devices. This technological progress has increased our understanding of the science involved, such as flux pinning and dynamics, and anomalous long-range superconducting interactions. At this important stage, international cooperation and collaborative projects can effectively sustain aggressive research and development in order to advance superconductivity to the next stages. The ISS Symposium is expected to serve as a venue for increasing our knowledge of superconductivity and for exchanging visions for future research and applications, through the presentation and discus of the latest research results. These proceedings also aim to summarize sion annual progress in high-Tc superconductivity in all fields.
Advances in Superconductivity IV
Author: Hisao Hayakawa
Publisher: Springer Science & Business Media
ISBN: 4431681957
Category : Science
Languages : en
Pages : 1086
Book Description
Five years have passed since the breakthrough in the critical temperature for superconductors. During this period, many superconducting materials have been discovered and developed, and our knowledge of the physical and other properties of oxide superconductors has deepened through extensive and intensive research. This knowledge has advanced superconductivity science and technology from the initial questioning stage to a more developed but still uncertain second stage where research activity in superconductivity now overlaps with fields of application. Generally speaking, science resonates with technology. Science not only complements but also competes with or stimulates technology. New scientific knowledge has triggered the second technological research stage. Much progress has been made in the development of practical devices, encouraging the application of superconductors in areas such as human levitation, a high speed levitated bearing, large current transforming leads, and high frequency devices. This technological progress has increased our understanding of the science involved, such as flux pinning and dynamics, and anomalous long-range superconducting interactions. At this important stage, international cooperation and collaborative projects can effectively sustain aggressive research and development in order to advance superconductivity to the next stages. The ISS Symposium is expected to serve as a venue for increasing our knowledge of superconductivity and for exchanging visions for future research and applications, through the presentation and discus of the latest research results. These proceedings also aim to summarize sion annual progress in high-Tc superconductivity in all fields.
Publisher: Springer Science & Business Media
ISBN: 4431681957
Category : Science
Languages : en
Pages : 1086
Book Description
Five years have passed since the breakthrough in the critical temperature for superconductors. During this period, many superconducting materials have been discovered and developed, and our knowledge of the physical and other properties of oxide superconductors has deepened through extensive and intensive research. This knowledge has advanced superconductivity science and technology from the initial questioning stage to a more developed but still uncertain second stage where research activity in superconductivity now overlaps with fields of application. Generally speaking, science resonates with technology. Science not only complements but also competes with or stimulates technology. New scientific knowledge has triggered the second technological research stage. Much progress has been made in the development of practical devices, encouraging the application of superconductors in areas such as human levitation, a high speed levitated bearing, large current transforming leads, and high frequency devices. This technological progress has increased our understanding of the science involved, such as flux pinning and dynamics, and anomalous long-range superconducting interactions. At this important stage, international cooperation and collaborative projects can effectively sustain aggressive research and development in order to advance superconductivity to the next stages. The ISS Symposium is expected to serve as a venue for increasing our knowledge of superconductivity and for exchanging visions for future research and applications, through the presentation and discus of the latest research results. These proceedings also aim to summarize sion annual progress in high-Tc superconductivity in all fields.
Advances in Superconductivity VIII
Author: Hisao Hayakawa
Publisher: Springer Science & Business Media
ISBN: 4431668713
Category : Technology & Engineering
Languages : en
Pages : 1394
Book Description
Since the discovery of superconductivity with trans1tton temperatures above 77 K, concentrated research activities toward the exploration of practical applica tions of these materials have been carried out. Currently, a remarkable improve ment in superconducting properties has been achieved due to the fine optimization of fabrication processes, and this has attracted industrial interest for future applications. In the case of NdBa Cu 0 materials, a new pinning mecha 2 3 7 nism was found which enhances the critical current under applied magnetic fields. In single crystals of these materials, oxygen control results in an increase in the growth rate. The metalorganic chemical vapor deposition (MOCVD) film quality has been improved by using a new liquid raw material. Simultaneously, real demands from the viewpoint of the market start to be a motivation force, es pecially in electronics application where some products are already being sold. At the same time, interesting physical properlies have been obtained from a new superconducting single crystal which has a layered perovskite structure without copper. In addition, various precision measurement techniques have confirmed the d-wave mechanism and the existence of intrinsicJosephson junctions in single crystals. These new phenomena challenge the existing theoretical models but also open the way for new applications. These significant areas of progress in materials science have led high-Tc super conductivity research into the next phase of activity, while fundamental research continues to be very important. I sincerely hope that this volume will give further impetus to this development.
Publisher: Springer Science & Business Media
ISBN: 4431668713
Category : Technology & Engineering
Languages : en
Pages : 1394
Book Description
Since the discovery of superconductivity with trans1tton temperatures above 77 K, concentrated research activities toward the exploration of practical applica tions of these materials have been carried out. Currently, a remarkable improve ment in superconducting properties has been achieved due to the fine optimization of fabrication processes, and this has attracted industrial interest for future applications. In the case of NdBa Cu 0 materials, a new pinning mecha 2 3 7 nism was found which enhances the critical current under applied magnetic fields. In single crystals of these materials, oxygen control results in an increase in the growth rate. The metalorganic chemical vapor deposition (MOCVD) film quality has been improved by using a new liquid raw material. Simultaneously, real demands from the viewpoint of the market start to be a motivation force, es pecially in electronics application where some products are already being sold. At the same time, interesting physical properlies have been obtained from a new superconducting single crystal which has a layered perovskite structure without copper. In addition, various precision measurement techniques have confirmed the d-wave mechanism and the existence of intrinsicJosephson junctions in single crystals. These new phenomena challenge the existing theoretical models but also open the way for new applications. These significant areas of progress in materials science have led high-Tc super conductivity research into the next phase of activity, while fundamental research continues to be very important. I sincerely hope that this volume will give further impetus to this development.
Scientific Information Bulletin
Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 704
Book Description
Advances in Superconductivity VII
Author: Kaoru Yamafuji
Publisher: Springer Science & Business Media
ISBN: 4431685359
Category : Science
Languages : en
Pages : 1339
Book Description
The field of high-temperature superconductivity has encouraged an inter disciplinary approach to research. It has required significant cooperation and collaboration among researchers, each of whom has brought to it a rich variety of experience from many other fields. Recently, great improvements have been made in the quality of research. The subject has matured and been launched into the next stage through the resonance between science and technology. The current progress of materials processing and engineering in this field is analogous to that previously seen in the development of semiconductors. These include the appearance of materials taking the place of YBa2Cu307 owing to their improved properties (higher critical temperatures and stronger flux pin ning) in which rare earth ions with large radii (La, Nd, Sm) substitute for Y; the development of technology enabling growth control on the nanometer scale; and precise and reproducible measurements that can be used as rigorous tests of theoretical models, which in turn are expected to lead to the develop ment of new devices. For further progress in high-T research, academics and c technologists must pool their knowledge and experience. I hope that this volume will promote that goal by providing the reader with the latest results of high-temperature superconductor research and will stimulate further discussion and collaboration.
Publisher: Springer Science & Business Media
ISBN: 4431685359
Category : Science
Languages : en
Pages : 1339
Book Description
The field of high-temperature superconductivity has encouraged an inter disciplinary approach to research. It has required significant cooperation and collaboration among researchers, each of whom has brought to it a rich variety of experience from many other fields. Recently, great improvements have been made in the quality of research. The subject has matured and been launched into the next stage through the resonance between science and technology. The current progress of materials processing and engineering in this field is analogous to that previously seen in the development of semiconductors. These include the appearance of materials taking the place of YBa2Cu307 owing to their improved properties (higher critical temperatures and stronger flux pin ning) in which rare earth ions with large radii (La, Nd, Sm) substitute for Y; the development of technology enabling growth control on the nanometer scale; and precise and reproducible measurements that can be used as rigorous tests of theoretical models, which in turn are expected to lead to the develop ment of new devices. For further progress in high-T research, academics and c technologists must pool their knowledge and experience. I hope that this volume will promote that goal by providing the reader with the latest results of high-temperature superconductor research and will stimulate further discussion and collaboration.
Advances in Superconductivity III
Author: Koji Kajimura
Publisher: Springer Science & Business Media
ISBN: 4431681418
Category : Technology & Engineering
Languages : en
Pages : 1312
Book Description
Since the discovery of high temperature superconductors, many new materials have been invented. In the last year, several new materials were also discovered, but their critical temperatures are still below lOOK. Precise physical and chemical work has made tremendous progress in the theoretical and experimental study of physical properties and carrier state characterizations. The de Haas van Alphen effect measurement showed the existence of a Fermi surface in YBCO. Flux dynamics is a well-known new problem in which flux creep and irreversibility line features are especially important for a fundamental understanding of the critical current and flux pinning. Flux pinning centers which are intentionally added using non-superconducting precipitates, neutrons, and protons, etc. increase critical currents to practical levels. The analysis of electric and magnetic properties are expected to reveal the pinning mechanism and also to further application development. As for wires and bulks, many melt-like sintering techniques have improved the material performance of critical current densities. A new seeding Quench-Melt Growth technique enlarged crystal size and increased the repulsion force. These melting processes, in conjunction with a mechanical strength improvement have been effectively introduced into wire fabrication in order to realize kilometer range wires and will put the oxide wires to practical use. Where thin film is con cerned, when many fabrication methods had been developed using the assistance effect of activated oxygen such as ozone and oxygen radicals, a high current 2 density of 106A/cm at 77K was reported.
Publisher: Springer Science & Business Media
ISBN: 4431681418
Category : Technology & Engineering
Languages : en
Pages : 1312
Book Description
Since the discovery of high temperature superconductors, many new materials have been invented. In the last year, several new materials were also discovered, but their critical temperatures are still below lOOK. Precise physical and chemical work has made tremendous progress in the theoretical and experimental study of physical properties and carrier state characterizations. The de Haas van Alphen effect measurement showed the existence of a Fermi surface in YBCO. Flux dynamics is a well-known new problem in which flux creep and irreversibility line features are especially important for a fundamental understanding of the critical current and flux pinning. Flux pinning centers which are intentionally added using non-superconducting precipitates, neutrons, and protons, etc. increase critical currents to practical levels. The analysis of electric and magnetic properties are expected to reveal the pinning mechanism and also to further application development. As for wires and bulks, many melt-like sintering techniques have improved the material performance of critical current densities. A new seeding Quench-Melt Growth technique enlarged crystal size and increased the repulsion force. These melting processes, in conjunction with a mechanical strength improvement have been effectively introduced into wire fabrication in order to realize kilometer range wires and will put the oxide wires to practical use. Where thin film is con cerned, when many fabrication methods had been developed using the assistance effect of activated oxygen such as ozone and oxygen radicals, a high current 2 density of 106A/cm at 77K was reported.
Bismuth-Based High-Temperature Superconductors
Author: Hiroshi Maeda
Publisher: CRC Press
ISBN: 9780824796907
Category : Science
Languages : en
Pages : 652
Book Description
Provides coverage of the ongoing investigations on bismuth-based high-temperature cuprate superconductors, integrating scattered research activities and literature from 70 leading scientists throughout the world. The text covers crystal structures and microstructures, reversible or equilibrium magnetic and thermal properties, atomic site tunnel spectroscopy, experimental studies concerning equilibrium phases, and more.
Publisher: CRC Press
ISBN: 9780824796907
Category : Science
Languages : en
Pages : 652
Book Description
Provides coverage of the ongoing investigations on bismuth-based high-temperature cuprate superconductors, integrating scattered research activities and literature from 70 leading scientists throughout the world. The text covers crystal structures and microstructures, reversible or equilibrium magnetic and thermal properties, atomic site tunnel spectroscopy, experimental studies concerning equilibrium phases, and more.
Advances in Superconductivity V
Author: Yoshichika Bando
Publisher: Springer Science & Business Media
ISBN: 4431683054
Category : Science
Languages : en
Pages : 1319
Book Description
This book covers all research fields in high Tc Superconductivity. Breakthrougs in the single crystal growth of a monolithic device leads to a new technology.
Publisher: Springer Science & Business Media
ISBN: 4431683054
Category : Science
Languages : en
Pages : 1319
Book Description
This book covers all research fields in high Tc Superconductivity. Breakthrougs in the single crystal growth of a monolithic device leads to a new technology.
Advances in Superconductivity XI
Author: N. Koshizuka
Publisher: Springer Science & Business Media
ISBN: 4431668748
Category : Technology & Engineering
Languages : en
Pages : 1566
Book Description
The 11th International Symposium on Superconductivity was held November 16-19, 1998, in Fukuoka, Japan. Convened annually since 1988, the symposium covers the whole field of superconductivity from fundamental physics and chemistry to new applications. At the 11th Symposium, there was increased interest reported in the development of trial devices using bismuth wires and yttrium-based bulk materials. Among the presentations were those that clearly defined the development targets for next-generation yttrium-based wires and bulk materials and single-flux quantum (SFQ) circuits. Other popular topics were high-temperature superconductivity applications such as SQUIDs, microwave filters, and cryocooler-cooled magnets. With more than 600 participants from 18 countries, the symposium provided an excellent forum for exchanges of the most recent information in the field of superconductivity.
Publisher: Springer Science & Business Media
ISBN: 4431668748
Category : Technology & Engineering
Languages : en
Pages : 1566
Book Description
The 11th International Symposium on Superconductivity was held November 16-19, 1998, in Fukuoka, Japan. Convened annually since 1988, the symposium covers the whole field of superconductivity from fundamental physics and chemistry to new applications. At the 11th Symposium, there was increased interest reported in the development of trial devices using bismuth wires and yttrium-based bulk materials. Among the presentations were those that clearly defined the development targets for next-generation yttrium-based wires and bulk materials and single-flux quantum (SFQ) circuits. Other popular topics were high-temperature superconductivity applications such as SQUIDs, microwave filters, and cryocooler-cooled magnets. With more than 600 participants from 18 countries, the symposium provided an excellent forum for exchanges of the most recent information in the field of superconductivity.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1162
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1162
Book Description
Advances in Superconductivity VI
Author: Toshizo Fujita
Publisher: Springer Science & Business Media
ISBN: 443168266X
Category : Science
Languages : en
Pages : 1359
Book Description
More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi conductors. This interdisciplinary "resonance" will be certain to lead to further outstanding advances in the years to come. It goes without saying that worldwide information exchange is the key to accelerating progress in superconductivity science and technology. As in previous years, the ISS '93 served as a venue where visions of future develop ments were shared in addition to presentations and extensive discussions on the most up-to-date research results. I hope that the Proceedings contained in this volume will be consulted not only as a summary of the current "state of the art" in high-Tc superconductivity but also as a stimulating source of ideas regarding future applications of superconductivity research.
Publisher: Springer Science & Business Media
ISBN: 443168266X
Category : Science
Languages : en
Pages : 1359
Book Description
More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi conductors. This interdisciplinary "resonance" will be certain to lead to further outstanding advances in the years to come. It goes without saying that worldwide information exchange is the key to accelerating progress in superconductivity science and technology. As in previous years, the ISS '93 served as a venue where visions of future develop ments were shared in addition to presentations and extensive discussions on the most up-to-date research results. I hope that the Proceedings contained in this volume will be consulted not only as a summary of the current "state of the art" in high-Tc superconductivity but also as a stimulating source of ideas regarding future applications of superconductivity research.