Author: Marko V. Lubarda
Publisher: Cambridge University Press
ISBN: 1108603424
Category : Science
Languages : en
Pages : 501
Book Description
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
Intermediate Solid Mechanics
Author: Marko V. Lubarda
Publisher: Cambridge University Press
ISBN: 1108603424
Category : Science
Languages : en
Pages : 501
Book Description
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
Publisher: Cambridge University Press
ISBN: 1108603424
Category : Science
Languages : en
Pages : 501
Book Description
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
Intermediate Mechanics of Materials
Author: J. R. Barber
Publisher: Springer Science & Business Media
ISBN: 9400702957
Category : Science
Languages : en
Pages : 629
Book Description
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http://extras.springer.com/ .
Publisher: Springer Science & Business Media
ISBN: 9400702957
Category : Science
Languages : en
Pages : 629
Book Description
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http://extras.springer.com/ .
Solid Mechanics in Engineering
Author: Raymond Parnes
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 758
Book Description
This book provides a systematic, modern introduction to solid mechanics that is carefully motivated by realistic Engineering applications. Based on 25 years of teaching experience, Raymond Parnes uses a wealth of examples and a rich set of problems to build the reader's understanding of the scientific principles, without requiring 'higher mathematics'. Highlights of the book include The use of modern SI units throughout A thorough presentation of the subject stressing basic unifying concepts Comprehensive coverage, including topics such as the behaviour of materials on a phenomenological level Over 600 problems, many of which are designed for solving with MATLAB, MAPLE or MATHEMATICA. Solid Mechanics in Engineering is designed for 2-semester courses in Solid Mechanics or Strength of Materials taken by students in Mechanical, Civil or Aeronautical Engineering and Materials Science and may also be used for a first-year graduate program.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 758
Book Description
This book provides a systematic, modern introduction to solid mechanics that is carefully motivated by realistic Engineering applications. Based on 25 years of teaching experience, Raymond Parnes uses a wealth of examples and a rich set of problems to build the reader's understanding of the scientific principles, without requiring 'higher mathematics'. Highlights of the book include The use of modern SI units throughout A thorough presentation of the subject stressing basic unifying concepts Comprehensive coverage, including topics such as the behaviour of materials on a phenomenological level Over 600 problems, many of which are designed for solving with MATLAB, MAPLE or MATHEMATICA. Solid Mechanics in Engineering is designed for 2-semester courses in Solid Mechanics or Strength of Materials taken by students in Mechanical, Civil or Aeronautical Engineering and Materials Science and may also be used for a first-year graduate program.
Mechanics of Solids and Materials
Author: Robert Asaro
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Intermediate Quantum Mechanics
Author: Roman Jackiw
Publisher: CRC Press
ISBN: 0429973276
Category : Science
Languages : en
Pages : 297
Book Description
Graduate students in both theoretical and experimental physics will find this third edition of Intermediate Quantum Mechanics , refined and updated in 1986, indispensable. The first part of the book deals with the theory of atomic structure, while the second and third parts deal with the relativistic wave equations and introduction to field theory, making Intermediate Quantum Mechanics more complete than any other single-volume work on the subject.
Publisher: CRC Press
ISBN: 0429973276
Category : Science
Languages : en
Pages : 297
Book Description
Graduate students in both theoretical and experimental physics will find this third edition of Intermediate Quantum Mechanics , refined and updated in 1986, indispensable. The first part of the book deals with the theory of atomic structure, while the second and third parts deal with the relativistic wave equations and introduction to field theory, making Intermediate Quantum Mechanics more complete than any other single-volume work on the subject.
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 822
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 822
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Advanced Mechanics of Materials
Author: Arthur P. Boresi
Publisher: John Wiley & Sons
ISBN: 0471438812
Category : Science
Languages : en
Pages : 715
Book Description
Building on the success of five previous editions, this new sixth edition continues to present a unified approach to the study of the behavior of structural members and the development of design and failure criteria. The text treats each type of structural member in sufficient detail so that the resulting solutions are directly applicable to real-world problems. New examples for various types of member and a large number of new problems are included. To facilitate the transition from elementary mechanics of materials to advanced topics, a review of the elements of mechanics of materials is presented along with appropriate examples and problems.
Publisher: John Wiley & Sons
ISBN: 0471438812
Category : Science
Languages : en
Pages : 715
Book Description
Building on the success of five previous editions, this new sixth edition continues to present a unified approach to the study of the behavior of structural members and the development of design and failure criteria. The text treats each type of structural member in sufficient detail so that the resulting solutions are directly applicable to real-world problems. New examples for various types of member and a large number of new problems are included. To facilitate the transition from elementary mechanics of materials to advanced topics, a review of the elements of mechanics of materials is presented along with appropriate examples and problems.
Nonlinear Solid Mechanics
Author: Gerhard A. Holzapfel
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 482
Book Description
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 482
Book Description
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Solid Mechanics
Author: William F. Hosford
Publisher: Cambridge University Press
ISBN: 0521192293
Category : Science
Languages : en
Pages : 273
Book Description
This is a textbook for courses in civil and mechanical engineering that are commonly called Strength of Materials or Mechanics of Materials. The intent of this book is to provide a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility viscoelasticity, creep, ceramics, and polymers has been simplified.
Publisher: Cambridge University Press
ISBN: 0521192293
Category : Science
Languages : en
Pages : 273
Book Description
This is a textbook for courses in civil and mechanical engineering that are commonly called Strength of Materials or Mechanics of Materials. The intent of this book is to provide a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility viscoelasticity, creep, ceramics, and polymers has been simplified.
Engineering Solid Mechanics
Author: Abdel-Rahman A. Ragab
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 940
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 940
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.