Interim Report on the Global Design Effort Global International Linear Collider (ILC) R & D.

Interim Report on the Global Design Effort Global International Linear Collider (ILC) R & D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R & D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Interim Report on the Global Design Effort Global International Linear Collider (ILC) R & D.

Interim Report on the Global Design Effort Global International Linear Collider (ILC) R & D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R & D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

International Linear Collider-A Technical Progress Report

International Linear Collider-A Technical Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Get Book Here

Book Description
The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R & D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Governance of the International Linear Collider Project

Governance of the International Linear Collider Project PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly apportioned at both a national and global level, is essential if the project is to be realised. Finally, models for running costs and decommissioning at the conclusion of the ILC project are proposed. This document represents an interim report of the bodies and individuals studying these questions inside the structure set up and supervised by the International Committee for Future Accelerators (ICFA). It represents a request for comment to the international community in all relevant disciplines, scientific, technical and most importantly, political. Many areas require further study and some, in particular the site selection process, have not yet progressed sufficiently to be addressed in detail in this document. Discussion raised by this document will be vital in framing the final proposals due to be published in 2012 in the Technical Design Report being prepared by the Global Design Effort of the ILC.

The Global Design Effort for the International LInear Collider

The Global Design Effort for the International LInear Collider PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


ILC Reference Design Report

ILC Reference Design Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Get Book Here

Book Description
The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R & D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R & D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in a proposal for a 500 GeV center-of-mass linear collider in 2001 [2]. The concurrent (competing) design work on a normal conducting collider (NLC with X-band [3] and GLC with X- or C-Band [4]), has advanced the design concepts for the ILC injectors, Damping Rings (DR) and Beam Delivery System (BDS), as well as addressing overall operations, machine protection and availability issues. The X- and C-band R & D has led to concepts for the RF power source that may eventually produce either cost and/or performance benefits. Finally, the European XFEL [5] to be constructed at DESY, Hamburg, Germany, will make use of the TESLA linac technology, and represents a significant on-going R & D effort which remains of great benefit for the ILC. The current ILC baseline assumes an accelerating gradient of 31.5 MV/m to achieve a centre-of-mass energy of 500 GeV. The high luminosity requires the use of high power and small emittance beams. The choice of 1.3 GHz SCRF is well suited to the requirements, primarily because the very low power loss in the SCRF cavity walls allows the use of long RF pulses, relaxing the requirements on the peak-power generation, and ultimately leading to high wall-plug to beam transfer efficiency. The primary cost drivers are the SCRF Main Linac technology and the Conventional Facilities (including civil engineering). The choice of gradient is a key cost and performance parameter, since it dictates the length of the linacs, while the cavity quality factor (Q0) relates to the required cryogenic cooling power. The achievement of 31.5 MV/m as the baseline average operational accelerating gradient--requiring a minimum performance of 35 MV/m during cavity mass-production acceptance testing--represents the primary challenge to the global ILC R & D With the completion of the RDR, the GDE will shortly begin an engineering design study, closely coupled with a prioritized R & D program. The goal is to produce an Engineering Design Report (EDR) demonstrating readiness for construction by 2010, followed by start of construction in 2012. A seven-year construction phase is currently assumed, allowing operations to begin in 2019. This is consistent with a technically driven schedule for this international project.

The Reference Design for the ILC, Costs and What's Next

The Reference Design for the ILC, Costs and What's Next PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A Reference Design for the International Linear Collider was recently released. The scale of the ILC is such that it must be built by an international collaboration and the design is the culmination of a unique global effort. Through ICFA, a decision was made to base the design on superconducting RF technology and then the Global Design Effort (GDE) was created to coordinate the actual accelerator design toward a construction proposal. The reference design establishes all the features of the machine, and defines both the R & D program and engineering design that will now follow over the next few years. The features and status of.

The ILC Engineering Design Phase

The ILC Engineering Design Phase PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
In August 2007, the International Linear Collider-Global Design Effort (ILC-GDE) published the ILC Reference Design Report (RDR) which contains a description of the design of the linear collider and a ''value'' cost estimate. The RDR was developed over a 2 year period starting in August 2005 with the creation of the GDE at the Second ILC workshop, held at Snowmass, Colorado. The design described in the RDR and its associated estimate allow the GDE to plan and prioritize the next phase of the ILC, the creation of an Engineering Design and the production, by mid 2010, of an Engineering Design Report (EDR). The EDR will contain, in addition to a more mature design and an updated value estimate, a plan for executing the ILC Project. The purpose of the EDR is to facilitate formal international negotiations at government level on siting, funding, organization and execution of the ILC project with a timescale consistent with the start of construction in 2012. The creation of the ILC Engineering Design will include: (1) Basic R & D to demonstrate that all components can be engineered; (2) R & D into alternative solutions to mitigate remaining risk; (3) An overall design to allow machine construction to start within 3 years following its completion; (4) selection between high tech options to allow industrialization efforts; (5) A comprehensive value-engineering exercise; (6) A complete value cost estimate for the machine, including a funding profile consistent with the project schedule; (7) A project execution plan including a realistic schedule; (8) Designs for facilities shared between different ''area systems'', and for site-specific infrastructure. The designs must include the level of detail needed for regions to estimate the cost to host; and (9) All necessary information must be provided to regions to evaluate project technical and financial risks in support of a bid to host. With the completion of the EDR, the ILC-GDE leadership will be able to seek approval of the ILC project from governmental agencies.

International Linear Collider (ILC)

International Linear Collider (ILC) PDF Author: Alexey Drutskoy
Publisher: Morgan & Claypool Publishers
ISBN: 1643273264
Category : Science
Languages : en
Pages : 62

Get Book Here

Book Description
The International Linear Collider (ILC) is a mega-scale, technically complex project, requiring large financial resources and cooperation of thousands of scientists and engineers from all over the world. Such a big and expensive project has to be discussed publicly, and the planned goals have to be clearly formulated. This book advocates for the demand for the project, motivated by the current situation in particle physics. The natural and most powerful way of obtaining new knowledge in particle physics is to build a new collider with a larger energy. In this approach, the Large Hadron Collider (LHC) was created and is now operating at the world record center of-mass energy of 13 TeV. Although the design of colliders with a larger energy of 50-100 TeV has been discussed, the practical realization of such a project is not possible for another 20-30 years. Of course, many new results are expected from LHC over the next decade. However, we must also think about other opportunities, and in particular, about the construction of more dedicated experiments. There are many potentially promising projects, however, the most obvious possibility to achieve significant progress in particle physics in the near future is the construction of a linear e+e- collider with energies in the range (250-1000) GeV. Such a project, the ILC, is proposed to be built in Kitakami, Japan. This book will discuss why this project is important and which new discoveries can be expected with this collider.

Proceedings of the 2005 International Linear Collider Workshop (LCWS05).

Proceedings of the 2005 International Linear Collider Workshop (LCWS05). PDF Author: JoAnne Hewett
Publisher:
ISBN:
Category :
Languages : en
Pages : 967

Get Book Here

Book Description
Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With the LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.

Present Status of the ILC Project and Development

Present Status of the ILC Project and Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The Technical Design of the International Linear Collider (ILC) Project will be finished in late 2012. The Technical Design Report (TDR) will include a description of the updated design, with a cost estimate and a project plan, and the results of research and development (R & D) done in support of the ILC. Results from directed ILC R & D are used to reduce the cost and risk associated with the ILC design. We present a summary of key challenges and show how the global R & D effort has addressed them. The most important activity has been in pursuit of very high gradient superconducting RF linac technology. There has been excellent progress toward the goal of practical industrial production of niobium sheet-metal cavities with gradient performance in excess of 35 MV/m. In addition, three purpose-built beam test facilities have been constructed and used to study and demonstrate high current linac performance, electron-cloud beam dynamics and precision beam control. The report also includes a summary of component design studies and conventional facilities cost optimization design studies.