Interdisciplinary Mathematics Education

Interdisciplinary Mathematics Education PDF Author: Brian Doig
Publisher: Springer
ISBN: 3030110664
Category : Education
Languages : en
Pages : 302

Get Book Here

Book Description
This open access book is the first major publication on the topic of “Interdisciplinary Mathematics Education” and arose from the work of the first International Topic Study Group of the same name at the ICME-13 conference in Hamburg in 2016. It offers extensive theoretical insights, empirical research, and practitioner accounts of interdisciplinary mathematics work in STEM and beyond (e.g. in music and the arts). Scholars and practitioners from four continents contributed to this comprehensive book, and present studies on: the conceptualizations of interdisciplinarity; implementation cases at schools and tertiary institutions; teacher education; and implications for policy and practice. Each chapter, and the book itself, closes with an assessment of the most significant aspects that those involved in policy and practice, as well as future researchers, should take into account.

Interdisciplinary Mathematics Education

Interdisciplinary Mathematics Education PDF Author: Brian Doig
Publisher: Springer
ISBN: 3030110664
Category : Education
Languages : en
Pages : 302

Get Book Here

Book Description
This open access book is the first major publication on the topic of “Interdisciplinary Mathematics Education” and arose from the work of the first International Topic Study Group of the same name at the ICME-13 conference in Hamburg in 2016. It offers extensive theoretical insights, empirical research, and practitioner accounts of interdisciplinary mathematics work in STEM and beyond (e.g. in music and the arts). Scholars and practitioners from four continents contributed to this comprehensive book, and present studies on: the conceptualizations of interdisciplinarity; implementation cases at schools and tertiary institutions; teacher education; and implications for policy and practice. Each chapter, and the book itself, closes with an assessment of the most significant aspects that those involved in policy and practice, as well as future researchers, should take into account.

Advances in Interdisciplinary Applied Discrete Mathematics

Advances in Interdisciplinary Applied Discrete Mathematics PDF Author: Hemanshu Kaul
Publisher: World Scientific
ISBN: 9814299146
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Focuses on fields such as consensus and voting theory, clustering, location theory, mathematical biology, and optimization that have seen an upsurge of exciting works over the years using discrete models in modern applications. This book discusses advances in the fields, highlighting the approach of cross-fertilization of ideas across disciplines.

Interdisciplinary Perspectives on Math Cognition

Interdisciplinary Perspectives on Math Cognition PDF Author: Marcel Danesi
Publisher: Springer Nature
ISBN: 3030225372
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This is an anthology of contemporary studies from various disciplinary perspectives written by some of the world's most renowned experts in each of the areas of mathematics, neuroscience, psychology, linguistics, semiotics, education, and more. Its purpose is not to add merely to the accumulation of studies, but to show that math cognition is best approached from various disciplinary angles, with the goal of broadening the general understanding of mathematical cognition through the different theoretical threads that can be woven into an overall understanding. This volume will be of interest to mathematicians, cognitive scientists, educators of mathematics, philosophers of mathematics, semioticians, psychologists, linguists, anthropologists, and all other kinds of scholars who are interested in the nature, origin, and development of mathematical cognition.

Multicultural Mathematics

Multicultural Mathematics PDF Author: Claudia Zaslavsky
Publisher: Walch Publishing
ISBN: 9780825121814
Category : Education
Languages : en
Pages : 164

Get Book Here

Book Description
58 activities to supplement and enrich the regular mathematics curriculum.

Media Theory

Media Theory PDF Author: David Eppstein
Publisher: Springer Science & Business Media
ISBN: 3540716971
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
This book presents a mathematical structure modeling a physical or biological system that can be in any of a number of states. Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those features. The book considers the evolution of such a system over time and analyzes such a structure from algebraic and probabilistic (stochastic) standpoints.

Interdisciplinary Mathematics

Interdisciplinary Mathematics PDF Author: Robert Hermann
Publisher:
ISBN: 9780915692255
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description


Mathematical Biology II

Mathematical Biology II PDF Author: James D. Murray
Publisher: Springer Science & Business Media
ISBN: 0387952284
Category : Mathematics
Languages : en
Pages : 834

Get Book Here

Book Description
This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience PDF Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
ISBN: 0387877088
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Geometric Optimal Control

Geometric Optimal Control PDF Author: Heinz Schättler
Publisher: Springer Science & Business Media
ISBN: 1461438349
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

Geometric Design of Linkages

Geometric Design of Linkages PDF Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 1441978925
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.