Author: Roman V. Krems
Publisher: John Wiley & Sons
ISBN: 1118173619
Category : Science
Languages : en
Pages : 384
Book Description
A tutorial for calculating the response of molecules to electric and magnetic fields with examples from research in ultracold physics, controlled chemistry, and molecular collisions in fields Molecules in Electromagnetic Fields is intended to serve as a tutorial for students beginning research, theoretical or experimental, in an area related to molecular physics. The author—a noted expert in the field—offers a systematic discussion of the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. The book illustrates how the concepts developed in ultracold physics research have led to what may be the beginning of controlled chemistry in the fully quantum regime. Offering a glimpse of the current state of the art research, this book suggests future research avenues for ultracold chemistry. The text describes theories needed to understand recent exciting developments in the research on trapping molecules, guiding molecular beams, laser control of molecular rotations, and external field control of microscopic intermolecular interactions. In addition, the author presents the description of scattering theory for molecules in electromagnetic fields and offers practical advice for students working on various aspects of molecular interactions. This important text: Offers information on theeffects of electromagnetic fields on the structure of molecular energy levels Includes thorough descriptions of the most useful theories for ultracold molecule researchers Presents a wealth of illustrative examples from recent experimental and theoretical work Contains helpful exercises that help to reinforce concepts presented throughout text Written for senior undergraduate and graduate students, professors, researchers, physicists, physical chemists, and chemical physicists, Molecules in Electromagnetic Fields is an interdisciplinary text describing theories and examples from the core of contemporary molecular physics.
Molecules in Electromagnetic Fields
Author: Roman V. Krems
Publisher: John Wiley & Sons
ISBN: 1118173619
Category : Science
Languages : en
Pages : 384
Book Description
A tutorial for calculating the response of molecules to electric and magnetic fields with examples from research in ultracold physics, controlled chemistry, and molecular collisions in fields Molecules in Electromagnetic Fields is intended to serve as a tutorial for students beginning research, theoretical or experimental, in an area related to molecular physics. The author—a noted expert in the field—offers a systematic discussion of the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. The book illustrates how the concepts developed in ultracold physics research have led to what may be the beginning of controlled chemistry in the fully quantum regime. Offering a glimpse of the current state of the art research, this book suggests future research avenues for ultracold chemistry. The text describes theories needed to understand recent exciting developments in the research on trapping molecules, guiding molecular beams, laser control of molecular rotations, and external field control of microscopic intermolecular interactions. In addition, the author presents the description of scattering theory for molecules in electromagnetic fields and offers practical advice for students working on various aspects of molecular interactions. This important text: Offers information on theeffects of electromagnetic fields on the structure of molecular energy levels Includes thorough descriptions of the most useful theories for ultracold molecule researchers Presents a wealth of illustrative examples from recent experimental and theoretical work Contains helpful exercises that help to reinforce concepts presented throughout text Written for senior undergraduate and graduate students, professors, researchers, physicists, physical chemists, and chemical physicists, Molecules in Electromagnetic Fields is an interdisciplinary text describing theories and examples from the core of contemporary molecular physics.
Publisher: John Wiley & Sons
ISBN: 1118173619
Category : Science
Languages : en
Pages : 384
Book Description
A tutorial for calculating the response of molecules to electric and magnetic fields with examples from research in ultracold physics, controlled chemistry, and molecular collisions in fields Molecules in Electromagnetic Fields is intended to serve as a tutorial for students beginning research, theoretical or experimental, in an area related to molecular physics. The author—a noted expert in the field—offers a systematic discussion of the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. The book illustrates how the concepts developed in ultracold physics research have led to what may be the beginning of controlled chemistry in the fully quantum regime. Offering a glimpse of the current state of the art research, this book suggests future research avenues for ultracold chemistry. The text describes theories needed to understand recent exciting developments in the research on trapping molecules, guiding molecular beams, laser control of molecular rotations, and external field control of microscopic intermolecular interactions. In addition, the author presents the description of scattering theory for molecules in electromagnetic fields and offers practical advice for students working on various aspects of molecular interactions. This important text: Offers information on theeffects of electromagnetic fields on the structure of molecular energy levels Includes thorough descriptions of the most useful theories for ultracold molecule researchers Presents a wealth of illustrative examples from recent experimental and theoretical work Contains helpful exercises that help to reinforce concepts presented throughout text Written for senior undergraduate and graduate students, professors, researchers, physicists, physical chemists, and chemical physicists, Molecules in Electromagnetic Fields is an interdisciplinary text describing theories and examples from the core of contemporary molecular physics.
Atoms, Molecules and Clusters in Electric Fields
Author: George Maroulis
Publisher: Imperial College Press
ISBN: 1860946763
Category : Technology & Engineering
Languages : en
Pages : 693
Book Description
With the central importance of electric polarizability and hyperpolarizability for a wide spectrum of activities, this book charts the trends in the accurate theoretical determination of these properties in specialized fields. The contributions include reviews and original papers that extend from methodology to applications in specific areas of primary importance such as cluster science and organic synthesis of molecules with specific properties.
Publisher: Imperial College Press
ISBN: 1860946763
Category : Technology & Engineering
Languages : en
Pages : 693
Book Description
With the central importance of electric polarizability and hyperpolarizability for a wide spectrum of activities, this book charts the trends in the accurate theoretical determination of these properties in specialized fields. The contributions include reviews and original papers that extend from methodology to applications in specific areas of primary importance such as cluster science and organic synthesis of molecules with specific properties.
Elements of Modern Physics
Author: S. H. Patil
Publisher: Springer Nature
ISBN: 3030701433
Category : Science
Languages : en
Pages : 432
Book Description
This book covers important concepts and applications of contemporary physics. The book emphasizes logical development of the subject and attempts to maintain rigor in the analytical discussions. The text has been presented in a concise and lucid manner. A modern description of properties and interaction of particle is given along with discussions on topics such as cosmology, laser and applications. The concepts are illustrated by numerous worked examples. Selected problems given at the end of each chapter help students to evaluate their skills. The book with its simple style, comprehensive and up-to-date coverage is highly useful for physics students. The detailed coverage and pedagogical tools make this an ideal book also for the engineering students studying core courses in physics.
Publisher: Springer Nature
ISBN: 3030701433
Category : Science
Languages : en
Pages : 432
Book Description
This book covers important concepts and applications of contemporary physics. The book emphasizes logical development of the subject and attempts to maintain rigor in the analytical discussions. The text has been presented in a concise and lucid manner. A modern description of properties and interaction of particle is given along with discussions on topics such as cosmology, laser and applications. The concepts are illustrated by numerous worked examples. Selected problems given at the end of each chapter help students to evaluate their skills. The book with its simple style, comprehensive and up-to-date coverage is highly useful for physics students. The detailed coverage and pedagogical tools make this an ideal book also for the engineering students studying core courses in physics.
Atoms, Molecules and Photons
Author: Wolfgang Demtröder
Publisher: Springer Science & Business Media
ISBN: 3642102980
Category : Science
Languages : en
Pages : 601
Book Description
This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed during the last two centuries by many experimental discoveries and from the theoretical side by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions should induce the reader to an intense active cooperation.
Publisher: Springer Science & Business Media
ISBN: 3642102980
Category : Science
Languages : en
Pages : 601
Book Description
This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed during the last two centuries by many experimental discoveries and from the theoretical side by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions should induce the reader to an intense active cooperation.
Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules
Author: Jacob P. Covey
Publisher: Springer
ISBN: 3319981072
Category : Science
Languages : en
Pages : 257
Book Description
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.
Publisher: Springer
ISBN: 3319981072
Category : Science
Languages : en
Pages : 257
Book Description
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.
Concepts and Methods in Modern Theoretical Chemistry
Author: Swapan Kumar Ghosh
Publisher: CRC Press
ISBN: 1466505311
Category : Science
Languages : en
Pages : 489
Book Description
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, the first book in a two-volume set, focuses on the structure and reactivity of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how co
Publisher: CRC Press
ISBN: 1466505311
Category : Science
Languages : en
Pages : 489
Book Description
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, the first book in a two-volume set, focuses on the structure and reactivity of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how co
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1338
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1338
Book Description
Physical Chemistry
Author: Peter Atkins
Publisher: Macmillan
ISBN: 0716787598
Category : Science
Languages : en
Pages : 1087
Book Description
Change 21.
Publisher: Macmillan
ISBN: 0716787598
Category : Science
Languages : en
Pages : 1087
Book Description
Change 21.
Polaritonic Chemistry
Author: Javier Galego Pascual
Publisher: Springer Nature
ISBN: 3030486982
Category : Science
Languages : en
Pages : 179
Book Description
Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.
Publisher: Springer Nature
ISBN: 3030486982
Category : Science
Languages : en
Pages : 179
Book Description
Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.
Comprehensive Inorganic Chemistry II
Author:
Publisher: Newnes
ISBN: 0080965296
Category : Science
Languages : en
Pages : 7694
Book Description
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973
Publisher: Newnes
ISBN: 0080965296
Category : Science
Languages : en
Pages : 7694
Book Description
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973