Author: Ekaterina Ovchinnikova
Publisher: Springer Science & Business Media
ISBN: 9491216538
Category : Computers
Languages : en
Pages : 252
Book Description
This book concerns non-linguistic knowledge required to perform computational natural language understanding (NLU). The main objective of the book is to show that inference-based NLU has the potential for practical large scale applications. First, an introduction to research areas relevant for NLU is given. We review approaches to linguistic meaning, explore knowledge resources, describe semantic parsers, and compare two main forms of inference: deduction and abduction. In the main part of the book, we propose an integrative knowledge base combining lexical-semantic, ontological, and distributional knowledge. A particular attention is payed to ensuring its consistency. We then design a reasoning procedure able to make use of the large scale knowledge base. We experiment both with a deduction-based NLU system and with an abductive reasoner. For evaluation, we use three different NLU tasks: recognizing textual entailment, semantic role labeling, and interpretation of noun dependencies.
Integration of World Knowledge for Natural Language Understanding
Author: Ekaterina Ovchinnikova
Publisher: Springer Science & Business Media
ISBN: 9491216538
Category : Computers
Languages : en
Pages : 252
Book Description
This book concerns non-linguistic knowledge required to perform computational natural language understanding (NLU). The main objective of the book is to show that inference-based NLU has the potential for practical large scale applications. First, an introduction to research areas relevant for NLU is given. We review approaches to linguistic meaning, explore knowledge resources, describe semantic parsers, and compare two main forms of inference: deduction and abduction. In the main part of the book, we propose an integrative knowledge base combining lexical-semantic, ontological, and distributional knowledge. A particular attention is payed to ensuring its consistency. We then design a reasoning procedure able to make use of the large scale knowledge base. We experiment both with a deduction-based NLU system and with an abductive reasoner. For evaluation, we use three different NLU tasks: recognizing textual entailment, semantic role labeling, and interpretation of noun dependencies.
Publisher: Springer Science & Business Media
ISBN: 9491216538
Category : Computers
Languages : en
Pages : 252
Book Description
This book concerns non-linguistic knowledge required to perform computational natural language understanding (NLU). The main objective of the book is to show that inference-based NLU has the potential for practical large scale applications. First, an introduction to research areas relevant for NLU is given. We review approaches to linguistic meaning, explore knowledge resources, describe semantic parsers, and compare two main forms of inference: deduction and abduction. In the main part of the book, we propose an integrative knowledge base combining lexical-semantic, ontological, and distributional knowledge. A particular attention is payed to ensuring its consistency. We then design a reasoning procedure able to make use of the large scale knowledge base. We experiment both with a deduction-based NLU system and with an abductive reasoner. For evaluation, we use three different NLU tasks: recognizing textual entailment, semantic role labeling, and interpretation of noun dependencies.
Linguistics for the Age of AI
Author: Marjorie Mcshane
Publisher: MIT Press
ISBN: 0262362600
Category : Computers
Languages : en
Pages : 449
Book Description
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
Publisher: MIT Press
ISBN: 0262362600
Category : Computers
Languages : en
Pages : 449
Book Description
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
Natural Language Processing in Artificial Intelligence
Author: Brojo Kishore Mishra
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Natural Language Processing with Python
Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Applied Natural Language Processing in the Enterprise
Author: Ankur A. Patel
Publisher: "O'Reilly Media, Inc."
ISBN: 1492062545
Category : Computers
Languages : en
Pages : 336
Book Description
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Publisher: "O'Reilly Media, Inc."
ISBN: 1492062545
Category : Computers
Languages : en
Pages : 336
Book Description
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Knowledge-augmented Methods for Natural Language Processing
Author: Meng Jiang
Publisher: Springer Nature
ISBN: 9819707471
Category :
Languages : en
Pages : 101
Book Description
Publisher: Springer Nature
ISBN: 9819707471
Category :
Languages : en
Pages : 101
Book Description
Understanding Natural Language Understanding
Author: Erik Cambria
Publisher: Springer Nature
ISBN: 3031739744
Category :
Languages : en
Pages : 514
Book Description
Publisher: Springer Nature
ISBN: 3031739744
Category :
Languages : en
Pages : 514
Book Description
International Conference on Innovative Computing and Communications
Author: Ashish Khanna
Publisher: Springer Nature
ISBN: 9811512868
Category : Technology & Engineering
Languages : en
Pages : 891
Book Description
This book includes high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which is held at the VŠB - Technical University of Ostrava, Czech Republic, on 21–22 March 2019. Introducing the innovative works of scientists, professors, research scholars, students, and industrial experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.
Publisher: Springer Nature
ISBN: 9811512868
Category : Technology & Engineering
Languages : en
Pages : 891
Book Description
This book includes high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which is held at the VŠB - Technical University of Ostrava, Czech Republic, on 21–22 March 2019. Introducing the innovative works of scientists, professors, research scholars, students, and industrial experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.
Natural Language Processing with SAS
Author:
Publisher:
ISBN: 9781952363184
Category :
Languages : en
Pages : 74
Book Description
Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.
Publisher:
ISBN: 9781952363184
Category :
Languages : en
Pages : 74
Book Description
Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.