Author: Stan Jarzabek
Publisher: Springer
ISBN: 3030265749
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
In this book, the authors highlight recent findings that hold the potential to improve software products or development processes; in addition, they help readers understand new concepts and technologies, and to see what it takes to migrate from old to new platforms. Some of the authors have spent most of their careers in industry, working at the frontiers of practice-based innovation, and are at the same time prominent researchers who have made significant academic contributions. Others work together with industry to test, in industrial settings, the methods they’ve developed in the lab. The choice of subject and authors represent the key elements of this book. Its respective chapters cover a wide range of topics, from cloud computing to agile development, applications of data science methods, re-engineering of aging applications into modern ones, and business and requirements engineering. Taken together, they offer a valuable asset for practitioners and researchers alike.
Integrating Research and Practice in Software Engineering
Contemporary Empirical Methods in Software Engineering
Author: Michael Felderer
Publisher: Springer Nature
ISBN: 3030324893
Category : Computers
Languages : en
Pages : 525
Book Description
This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030324893
Category : Computers
Languages : en
Pages : 525
Book Description
This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Software Engineering Practice
Author: Thomas B. Hilburn
Publisher: CRC Press
ISBN: 1466591692
Category : Computers
Languages : en
Pages : 347
Book Description
This book is a broad discussion covering the entire software development lifecycle. It uses a comprehensive case study to address each topic and features the following: A description of the development, by the fictional company Homeowner, of the DigitalHome (DH) System, a system with "smart" devices for controlling home lighting, temperature, humidity, small appliance power, and security A set of scenarios that provide a realistic framework for use of the DH System material Just-in-time training: each chapter includes mini tutorials introducing various software engineering topics that are discussed in that chapter and used in the case study A set of case study exercises that provide an opportunity to engage students in software development practice, either individually or in a team environment. Offering a new approach to learning about software engineering theory and practice, the text is specifically designed to: Support teaching software engineering, using a comprehensive case study covering the complete software development lifecycle Offer opportunities for students to actively learn about and engage in software engineering practice Provide a realistic environment to study a wide array of software engineering topics including agile development Software Engineering Practice: A Case Study Approach supports a student-centered, "active" learning style of teaching. The DH case study exercises provide a variety of opportunities for students to engage in realistic activities related to the theory and practice of software engineering. The text uses a fictitious team of software engineers to portray the nature of software engineering and to depict what actual engineers do when practicing software engineering. All the DH case study exercises can be used as team or group exercises in collaborative learning. Many of the exercises have specific goals related to team building and teaming skills. The text also can be used to support the professional development or certification of practicing software engineers. The case study exercises can be integrated with presentations in a workshop or short course for professionals.
Publisher: CRC Press
ISBN: 1466591692
Category : Computers
Languages : en
Pages : 347
Book Description
This book is a broad discussion covering the entire software development lifecycle. It uses a comprehensive case study to address each topic and features the following: A description of the development, by the fictional company Homeowner, of the DigitalHome (DH) System, a system with "smart" devices for controlling home lighting, temperature, humidity, small appliance power, and security A set of scenarios that provide a realistic framework for use of the DH System material Just-in-time training: each chapter includes mini tutorials introducing various software engineering topics that are discussed in that chapter and used in the case study A set of case study exercises that provide an opportunity to engage students in software development practice, either individually or in a team environment. Offering a new approach to learning about software engineering theory and practice, the text is specifically designed to: Support teaching software engineering, using a comprehensive case study covering the complete software development lifecycle Offer opportunities for students to actively learn about and engage in software engineering practice Provide a realistic environment to study a wide array of software engineering topics including agile development Software Engineering Practice: A Case Study Approach supports a student-centered, "active" learning style of teaching. The DH case study exercises provide a variety of opportunities for students to engage in realistic activities related to the theory and practice of software engineering. The text uses a fictitious team of software engineers to portray the nature of software engineering and to depict what actual engineers do when practicing software engineering. All the DH case study exercises can be used as team or group exercises in collaborative learning. Many of the exercises have specific goals related to team building and teaming skills. The text also can be used to support the professional development or certification of practicing software engineers. The case study exercises can be integrated with presentations in a workshop or short course for professionals.
Guide to the Software Engineering Body of Knowledge (Swebok(r))
Author: IEEE Computer Society
Publisher:
ISBN: 9780769551661
Category : Computer software
Languages : en
Pages : 348
Book Description
In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
Publisher:
ISBN: 9780769551661
Category : Computer software
Languages : en
Pages : 348
Book Description
In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
Model-Driven Software Development: Integrating Quality Assurance
Author: Rech, Jrg
Publisher: IGI Global
ISBN: 1605660078
Category : Computers
Languages : en
Pages : 526
Book Description
Covers important concepts, issues, trends, methodologies, and technologies in quality assurance for model-driven software development.
Publisher: IGI Global
ISBN: 1605660078
Category : Computers
Languages : en
Pages : 526
Book Description
Covers important concepts, issues, trends, methodologies, and technologies in quality assurance for model-driven software development.
Design Research in Information Systems
Author: Alan Hevner
Publisher: Springer Science & Business Media
ISBN: 1441956530
Category : Business & Economics
Languages : en
Pages : 335
Book Description
It is 5 years since the publication of the seminal paper on “Design Science in Information Systems Research” by Hevner, March, Park, and Ram in MIS Quarterly and the initiation of the Information Technology and Systems department of the Communications of AIS. These events in 2004 are markers in the move of design science to the forefront of information systems research. A suf cient interval has elapsed since then to allow assessment of from where the eld has come and where it should go. Design science research and behavioral science research started as dual tracks when IS was a young eld. By the 1990s, the in ux of behavioral scientists started to dominate the number of design scientists and the eld moved in that direction. By the early 2000s, design people were having dif culty publishing in mainline IS journals and in being tenured in many universities. Yes, an annual Workshop on Information Technology and Systems (WITS) was established in 1991 in conju- tion with the International Conference on Information Systems (ICIS) and grew each year. But that was the extent of design science recognition. Fortunately, a revival is underway. By 2009, when this foreword was written, the fourth DESRIST c- ference has been held and plans are afoot for the 2010 meeting. Design scientists regained respect and recognition in many venues where they previously had little.
Publisher: Springer Science & Business Media
ISBN: 1441956530
Category : Business & Economics
Languages : en
Pages : 335
Book Description
It is 5 years since the publication of the seminal paper on “Design Science in Information Systems Research” by Hevner, March, Park, and Ram in MIS Quarterly and the initiation of the Information Technology and Systems department of the Communications of AIS. These events in 2004 are markers in the move of design science to the forefront of information systems research. A suf cient interval has elapsed since then to allow assessment of from where the eld has come and where it should go. Design science research and behavioral science research started as dual tracks when IS was a young eld. By the 1990s, the in ux of behavioral scientists started to dominate the number of design scientists and the eld moved in that direction. By the early 2000s, design people were having dif culty publishing in mainline IS journals and in being tenured in many universities. Yes, an annual Workshop on Information Technology and Systems (WITS) was established in 1991 in conju- tion with the International Conference on Information Systems (ICIS) and grew each year. But that was the extent of design science recognition. Fortunately, a revival is underway. By 2009, when this foreword was written, the fourth DESRIST c- ference has been held and plans are afoot for the 2010 meeting. Design scientists regained respect and recognition in many venues where they previously had little.
Evidence-Based Software Engineering and Systematic Reviews
Author: Barbara Ann Kitchenham
Publisher: CRC Press
ISBN: 1482228661
Category : Computers
Languages : en
Pages : 426
Book Description
In the decade since the idea of adapting the evidence-based paradigm for software engineering was first proposed, it has become a major tool of empirical software engineering. Evidence-Based Software Engineering and Systematic Reviews provides a clear introduction to the use of an evidence-based model for software engineering research and practice.
Publisher: CRC Press
ISBN: 1482228661
Category : Computers
Languages : en
Pages : 426
Book Description
In the decade since the idea of adapting the evidence-based paradigm for software engineering was first proposed, it has become a major tool of empirical software engineering. Evidence-Based Software Engineering and Systematic Reviews provides a clear introduction to the use of an evidence-based model for software engineering research and practice.
Research Anthology on Agile Software, Software Development, and Testing
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668437031
Category : Computers
Languages : en
Pages : 2164
Book Description
Software development continues to be an ever-evolving field as organizations require new and innovative programs that can be implemented to make processes more efficient, productive, and cost-effective. Agile practices particularly have shown great benefits for improving the effectiveness of software development and its maintenance due to their ability to adapt to change. It is integral to remain up to date with the most emerging tactics and techniques involved in the development of new and innovative software. The Research Anthology on Agile Software, Software Development, and Testing is a comprehensive resource on the emerging trends of software development and testing. This text discusses the newest developments in agile software and its usage spanning multiple industries. Featuring a collection of insights from diverse authors, this research anthology offers international perspectives on agile software. Covering topics such as global software engineering, knowledge management, and product development, this comprehensive resource is valuable to software developers, software engineers, computer engineers, IT directors, students, managers, faculty, researchers, and academicians.
Publisher: IGI Global
ISBN: 1668437031
Category : Computers
Languages : en
Pages : 2164
Book Description
Software development continues to be an ever-evolving field as organizations require new and innovative programs that can be implemented to make processes more efficient, productive, and cost-effective. Agile practices particularly have shown great benefits for improving the effectiveness of software development and its maintenance due to their ability to adapt to change. It is integral to remain up to date with the most emerging tactics and techniques involved in the development of new and innovative software. The Research Anthology on Agile Software, Software Development, and Testing is a comprehensive resource on the emerging trends of software development and testing. This text discusses the newest developments in agile software and its usage spanning multiple industries. Featuring a collection of insights from diverse authors, this research anthology offers international perspectives on agile software. Covering topics such as global software engineering, knowledge management, and product development, this comprehensive resource is valuable to software developers, software engineers, computer engineers, IT directors, students, managers, faculty, researchers, and academicians.
Model-Driven Software Engineering in Practice
Author: Marco Brambilla
Publisher: Morgan & Claypool Publishers
ISBN: 1627056955
Category : Computers
Languages : en
Pages : 391
Book Description
This book discusses how model-based approaches can improve the daily practice of software professionals. This is known as Model-Driven Software Engineering (MDSE) or, simply, Model-Driven Engineering (MDE). MDSE practices have proved to increase efficiency and effectiveness in software development, as demonstrated by various quantitative and qualitative studies. MDSE adoption in the software industry is foreseen to grow exponentially in the near future, e.g., due to the convergence of software development and business analysis. The aim of this book is to provide you with an agile and flexible tool to introduce you to the MDSE world, thus allowing you to quickly understand its basic principles and techniques and to choose the right set of MDSE instruments for your needs so that you can start to benefit from MDSE right away. The book is organized into two main parts. The first part discusses the foundations of MDSE in terms of basic concepts (i.e., models and transformations), driving principles, application scenarios, and current standards, like the well-known MDA initiative proposed by OMG (Object Management Group) as well as the practices on how to integrate MDSE in existing development processes. The second part deals with the technical aspects of MDSE, spanning from the basics on when and how to build a domain-specific modeling language, to the description of Model-to-Text and Model-to-Model transformations, and the tools that support the management of MDSE projects. The second edition of the book features: a set of completely new topics, including: full example of the creation of a new modeling language (IFML), discussion of modeling issues and approaches in specific domains, like business process modeling, user interaction modeling, and enterprise architecture complete revision of examples, figures, and text, for improving readability, understandability, and coherence better formulation of definitions, dependencies between concepts and ideas addition of a complete index of book content In addition to the contents of the book, more resources are provided on the book's website http://www.mdse-book.com, including the examples presented in the book.
Publisher: Morgan & Claypool Publishers
ISBN: 1627056955
Category : Computers
Languages : en
Pages : 391
Book Description
This book discusses how model-based approaches can improve the daily practice of software professionals. This is known as Model-Driven Software Engineering (MDSE) or, simply, Model-Driven Engineering (MDE). MDSE practices have proved to increase efficiency and effectiveness in software development, as demonstrated by various quantitative and qualitative studies. MDSE adoption in the software industry is foreseen to grow exponentially in the near future, e.g., due to the convergence of software development and business analysis. The aim of this book is to provide you with an agile and flexible tool to introduce you to the MDSE world, thus allowing you to quickly understand its basic principles and techniques and to choose the right set of MDSE instruments for your needs so that you can start to benefit from MDSE right away. The book is organized into two main parts. The first part discusses the foundations of MDSE in terms of basic concepts (i.e., models and transformations), driving principles, application scenarios, and current standards, like the well-known MDA initiative proposed by OMG (Object Management Group) as well as the practices on how to integrate MDSE in existing development processes. The second part deals with the technical aspects of MDSE, spanning from the basics on when and how to build a domain-specific modeling language, to the description of Model-to-Text and Model-to-Model transformations, and the tools that support the management of MDSE projects. The second edition of the book features: a set of completely new topics, including: full example of the creation of a new modeling language (IFML), discussion of modeling issues and approaches in specific domains, like business process modeling, user interaction modeling, and enterprise architecture complete revision of examples, figures, and text, for improving readability, understandability, and coherence better formulation of definitions, dependencies between concepts and ideas addition of a complete index of book content In addition to the contents of the book, more resources are provided on the book's website http://www.mdse-book.com, including the examples presented in the book.
Software Engineering for Science
Author: Jeffrey C. Carver
Publisher: CRC Press
ISBN: 1315351927
Category : Computers
Languages : en
Pages : 334
Book Description
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
Publisher: CRC Press
ISBN: 1315351927
Category : Computers
Languages : en
Pages : 334
Book Description
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.