Author: Isnaeni Murdi Hartanto
Publisher: CRC Press
ISBN: 1000468240
Category : Science
Languages : en
Pages : 183
Book Description
The availability of Earth observation and numerical weather prediction data for hydrological modelling and water management has increased significantly, creating a situation that today, for the same variable, estimates may be available from two or more sources of information. Yet, in hydrological modelling, usually, a particular set of catchment characteristics and input data is selected, possibly ignoring other relevant data sources. In this thesis, therefore, a framework is being proposed to enable effective use of multiple data sources in hydrological modelling. In this framework, each available data source is used to derive catchment parameter values or input time series. Each unique combination of catchment and input data sources thus leads to a different hydrological simulation result: a new ensemble member. Together, the members form an ensemble of hydrological simulations. By following this approach, all available data sources are used effectively and their information is preserved. The framework also accommodates for applying multiple data-model integration methods, e.g. data assimilation. Each alternative integration method leads to yet another unique simulation result. Case study results for a distributed hydrological model of Rijnland, the Netherlands, show that the framework can be applied effectively, improve discharge simulation, and partially account for parameter and data uncertainty.
Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach
Author: Isnaeni Murdi Hartanto
Publisher: CRC Press
ISBN: 1000468240
Category : Science
Languages : en
Pages : 183
Book Description
The availability of Earth observation and numerical weather prediction data for hydrological modelling and water management has increased significantly, creating a situation that today, for the same variable, estimates may be available from two or more sources of information. Yet, in hydrological modelling, usually, a particular set of catchment characteristics and input data is selected, possibly ignoring other relevant data sources. In this thesis, therefore, a framework is being proposed to enable effective use of multiple data sources in hydrological modelling. In this framework, each available data source is used to derive catchment parameter values or input time series. Each unique combination of catchment and input data sources thus leads to a different hydrological simulation result: a new ensemble member. Together, the members form an ensemble of hydrological simulations. By following this approach, all available data sources are used effectively and their information is preserved. The framework also accommodates for applying multiple data-model integration methods, e.g. data assimilation. Each alternative integration method leads to yet another unique simulation result. Case study results for a distributed hydrological model of Rijnland, the Netherlands, show that the framework can be applied effectively, improve discharge simulation, and partially account for parameter and data uncertainty.
Publisher: CRC Press
ISBN: 1000468240
Category : Science
Languages : en
Pages : 183
Book Description
The availability of Earth observation and numerical weather prediction data for hydrological modelling and water management has increased significantly, creating a situation that today, for the same variable, estimates may be available from two or more sources of information. Yet, in hydrological modelling, usually, a particular set of catchment characteristics and input data is selected, possibly ignoring other relevant data sources. In this thesis, therefore, a framework is being proposed to enable effective use of multiple data sources in hydrological modelling. In this framework, each available data source is used to derive catchment parameter values or input time series. Each unique combination of catchment and input data sources thus leads to a different hydrological simulation result: a new ensemble member. Together, the members form an ensemble of hydrological simulations. By following this approach, all available data sources are used effectively and their information is preserved. The framework also accommodates for applying multiple data-model integration methods, e.g. data assimilation. Each alternative integration method leads to yet another unique simulation result. Case study results for a distributed hydrological model of Rijnland, the Netherlands, show that the framework can be applied effectively, improve discharge simulation, and partially account for parameter and data uncertainty.
Integrating Multiscale Observations of U.S. Waters
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309114578
Category : Science
Languages : en
Pages : 210
Book Description
Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.
Publisher: National Academies Press
ISBN: 0309114578
Category : Science
Languages : en
Pages : 210
Book Description
Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.
Mathematical Models of Small Watershed Hydrology and Applications
Author: Vijay P. Singh
Publisher: Water Resources Publication
ISBN: 9781887201353
Category : Science
Languages : en
Pages : 984
Book Description
Comprehensive account of some of the most popular models of small watershed hydrology and application ~~ of interest to all hydrologic modelers and model users and a welcome and timely edition to any modeling library
Publisher: Water Resources Publication
ISBN: 9781887201353
Category : Science
Languages : en
Pages : 984
Book Description
Comprehensive account of some of the most popular models of small watershed hydrology and application ~~ of interest to all hydrologic modelers and model users and a welcome and timely edition to any modeling library
Handbook of HydroInformatics
Author: Saeid Eslamian
Publisher: Elsevier
ISBN: 0128219505
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Advanced Machine Learning Techniques includes the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. Handbook of HydroInformatics, Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. The global contributors cover theoretical foundational topics such as computational and statistical convergence rates, minimax estimation, and concentration of measure as well as advanced machine learning methods, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation; additionally, advanced frameworks such as privacy, causality, and stochastic learning algorithms are also included. Lastly, the volume presents Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode. This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in: Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering. - Key insights from 24 contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Defines both the designing of good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees.
Publisher: Elsevier
ISBN: 0128219505
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Advanced Machine Learning Techniques includes the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. Handbook of HydroInformatics, Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. The global contributors cover theoretical foundational topics such as computational and statistical convergence rates, minimax estimation, and concentration of measure as well as advanced machine learning methods, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation; additionally, advanced frameworks such as privacy, causality, and stochastic learning algorithms are also included. Lastly, the volume presents Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode. This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in: Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering. - Key insights from 24 contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Defines both the designing of good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees.
Hydrology and Hydrologic Modelling
Author: Manish Pandey
Publisher: Springer Nature
ISBN: 9819774748
Category :
Languages : en
Pages : 581
Book Description
Publisher: Springer Nature
ISBN: 9819774748
Category :
Languages : en
Pages : 581
Book Description
Hydrological Data Driven Modelling
Author: Renji Remesan
Publisher: Springer
ISBN: 3319092359
Category : Science
Languages : en
Pages : 261
Book Description
This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.
Publisher: Springer
ISBN: 3319092359
Category : Science
Languages : en
Pages : 261
Book Description
This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.
Ensemble Methods in Data Mining
Author: Giovanni Seni
Publisher: Springer Nature
ISBN: 3031018990
Category : Computers
Languages : en
Pages : 138
Book Description
Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity
Publisher: Springer Nature
ISBN: 3031018990
Category : Computers
Languages : en
Pages : 138
Book Description
Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity
Intelligent Interpretation for Geological Disasters
Author: Weitao Chen
Publisher: Springer Nature
ISBN: 9819958229
Category : Nature
Languages : en
Pages : 241
Book Description
This book comprehensively utilizes the new generation of artificial intelligence and remote sensing science and technology to systematically carry out researches on high-precision recognition, monitoring, analysis, and assessment of geological disasters by using different technologies of "ground, airspace, and space-based systems" and different scales of "target-semantic-region". The main contents include: 1) Intelligent interpretation theory and methods of geological disasters, 2) Intelligent analysis of landslide based on long-term ground monitoring data, 3) Intelligent analysis of landslide evolution based on optical satellite remote sensing data, 4) Deep learning-based remote sensing detection of landslide, 5) Intelligent assessment methods of landslide susceptibility, 6) Intelligent recognition of ground figure based on airspace-based remote sensing data. The book is of interest to graduate student, scientific, and technological personnel who work in the area of geological disasters, natural hazards, remote sensing, and artificial intelligence.
Publisher: Springer Nature
ISBN: 9819958229
Category : Nature
Languages : en
Pages : 241
Book Description
This book comprehensively utilizes the new generation of artificial intelligence and remote sensing science and technology to systematically carry out researches on high-precision recognition, monitoring, analysis, and assessment of geological disasters by using different technologies of "ground, airspace, and space-based systems" and different scales of "target-semantic-region". The main contents include: 1) Intelligent interpretation theory and methods of geological disasters, 2) Intelligent analysis of landslide based on long-term ground monitoring data, 3) Intelligent analysis of landslide evolution based on optical satellite remote sensing data, 4) Deep learning-based remote sensing detection of landslide, 5) Intelligent assessment methods of landslide susceptibility, 6) Intelligent recognition of ground figure based on airspace-based remote sensing data. The book is of interest to graduate student, scientific, and technological personnel who work in the area of geological disasters, natural hazards, remote sensing, and artificial intelligence.
Flood Forecasting Using Machine Learning Methods
Author: Fi-John Chang
Publisher: MDPI
ISBN: 3038975486
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.
Publisher: MDPI
ISBN: 3038975486
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.
Hydrology: Advances in Theory and Practice
Author: Nevil W. Quinn
Publisher: IWA Publishing
ISBN: 1789061423
Category : Science
Languages : en
Pages : 154
Book Description
Hydrology: Advances in Theory and Practice, brings together contributions to both the theory and practice of hydrology, including chapters on (amongst other topics) flood estimation methods and hydrological modelling. The book also looks forward with a global hydrology research agenda fit for the 2030s, and explores how to make advances in hydrological modelling – based on almost 50 years of modelling experience. In Focus – a book series that showcases the latest accomplishments in water research. Each book focuses on a specialist area with papers from top experts in the field. It aims to be a vehicle for in-depth understanding and inspire further conversations in the sector.
Publisher: IWA Publishing
ISBN: 1789061423
Category : Science
Languages : en
Pages : 154
Book Description
Hydrology: Advances in Theory and Practice, brings together contributions to both the theory and practice of hydrology, including chapters on (amongst other topics) flood estimation methods and hydrological modelling. The book also looks forward with a global hydrology research agenda fit for the 2030s, and explores how to make advances in hydrological modelling – based on almost 50 years of modelling experience. In Focus – a book series that showcases the latest accomplishments in water research. Each book focuses on a specialist area with papers from top experts in the field. It aims to be a vehicle for in-depth understanding and inspire further conversations in the sector.