Author: R.G. Buschman
Publisher: Springer Science & Business Media
ISBN: 1461312833
Category : Mathematics
Languages : en
Pages : 248
Book Description
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Integral Transformations, Operational Calculus, and Generalized Functions
Author: R.G. Buschman
Publisher: Springer Science & Business Media
ISBN: 1461312833
Category : Mathematics
Languages : en
Pages : 248
Book Description
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Publisher: Springer Science & Business Media
ISBN: 1461312833
Category : Mathematics
Languages : en
Pages : 248
Book Description
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Integral Transformations, Operational Calculus, and Generalized Functions
Author: R.G. Buschman
Publisher: Springer
ISBN: 9781461285489
Category : Mathematics
Languages : en
Pages : 240
Book Description
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Publisher: Springer
ISBN: 9781461285489
Category : Mathematics
Languages : en
Pages : 240
Book Description
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Integral Transformations, Operational Calculus and Their Applications
Author: Hari Mohan Srivastava
Publisher: MDPI
ISBN: 3039368826
Category : Science
Languages : en
Pages : 220
Book Description
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
Publisher: MDPI
ISBN: 3039368826
Category : Science
Languages : en
Pages : 220
Book Description
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
Operational Calculus and Related Topics
Author: A. P. Prudnikov
Publisher: CRC Press
ISBN: 1420011499
Category : Mathematics
Languages : en
Pages : 420
Book Description
Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
Publisher: CRC Press
ISBN: 1420011499
Category : Mathematics
Languages : en
Pages : 420
Book Description
Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
Methods of the Theory of Generalized Functions
Author: V. S. Vladimirov
Publisher: CRC Press
ISBN: 9780415273565
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
Publisher: CRC Press
ISBN: 9780415273565
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
Integral Transforms of Generalized Functions
Author: Brychkov
Publisher: CRC Press
ISBN: 9782881247057
Category : Mathematics
Languages : en
Pages : 362
Book Description
English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: CRC Press
ISBN: 9782881247057
Category : Mathematics
Languages : en
Pages : 362
Book Description
English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Operational Calculus and Generalized Functions
Author: Arthur Erdelyi
Publisher: Courier Corporation
ISBN: 0486316327
Category : Mathematics
Languages : en
Pages : 114
Book Description
Suitable for advanced undergraduates and graduate students, this brief monograph examines elementary and convergence theories of convolution quotients, differential equations involving operator functions, exponential functions of operators. Solutions. 1962 edition.
Publisher: Courier Corporation
ISBN: 0486316327
Category : Mathematics
Languages : en
Pages : 114
Book Description
Suitable for advanced undergraduates and graduate students, this brief monograph examines elementary and convergence theories of convolution quotients, differential equations involving operator functions, exponential functions of operators. Solutions. 1962 edition.
Applied Integral Transforms
Author: M. Ya. Antimirov
Publisher: American Mathematical Soc.
ISBN: 9780821843147
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book constructs the kernels of integral transforms by solving the generalized Sturm-Liouville problems associated with the partial differential equations at hand. In the first part of the book, the authors construct the kernels and use them to solve elementary problems of mathematical physics. This part requires little mathematical background and provides an introduction to the subject of integral transforms as it proceeds mainly by examples and includes a variety of exercises. In the second part of the book, the method of integral transforms is used to solve modern applied problems in convective stability, temperature fields in oil strata, and eddy-current testing. The choice of topics reflects the authors' research experience and involvement in industrial applications. The first part of the book is accessible to undergraduates, while the second part is aimed at graduate students and researchers. Because of the applications, the book will interest engineers (especially petroleum engineers) and physicists.
Publisher: American Mathematical Soc.
ISBN: 9780821843147
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book constructs the kernels of integral transforms by solving the generalized Sturm-Liouville problems associated with the partial differential equations at hand. In the first part of the book, the authors construct the kernels and use them to solve elementary problems of mathematical physics. This part requires little mathematical background and provides an introduction to the subject of integral transforms as it proceeds mainly by examples and includes a variety of exercises. In the second part of the book, the method of integral transforms is used to solve modern applied problems in convective stability, temperature fields in oil strata, and eddy-current testing. The choice of topics reflects the authors' research experience and involvement in industrial applications. The first part of the book is accessible to undergraduates, while the second part is aimed at graduate students and researchers. Because of the applications, the book will interest engineers (especially petroleum engineers) and physicists.
Integral Transforms of Generalized Functions and Their Applications
Author: Ram Shankar Pathak
Publisher: Routledge
ISBN: 135156269X
Category : History
Languages : en
Pages : 432
Book Description
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.
Publisher: Routledge
ISBN: 135156269X
Category : History
Languages : en
Pages : 432
Book Description
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.
Operational Calculus
Author: Kosaku Yosida
Publisher: Springer Science & Business Media
ISBN: 1461211182
Category : Mathematics
Languages : en
Pages : 182
Book Description
In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.
Publisher: Springer Science & Business Media
ISBN: 1461211182
Category : Mathematics
Languages : en
Pages : 182
Book Description
In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.