Author: Vladislav V Kravchenko
Publisher: CRC Press
ISBN: 1000115291
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.
Integral Representations For Spatial Models of Mathematical Physics
Author: Vladislav V Kravchenko
Publisher: CRC Press
ISBN: 1000115291
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.
Publisher: CRC Press
ISBN: 1000115291
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.
Integral Representations for Spatial Models of Mathematical Physics
Author: V. V. Kravchenko
Publisher:
ISBN:
Category :
Languages : en
Pages : 171
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 171
Book Description
Clifford Algebras and Their Application in Mathematical Physics
Author: Volker Dietrich
Publisher: Springer Science & Business Media
ISBN: 9401150362
Category : Mathematics
Languages : en
Pages : 458
Book Description
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Publisher: Springer Science & Business Media
ISBN: 9401150362
Category : Mathematics
Languages : en
Pages : 458
Book Description
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Clifford Algebras and their Applications in Mathematical Physics
Author: John Ryan
Publisher: Springer Science & Business Media
ISBN: 1461213746
Category : Mathematics
Languages : en
Pages : 331
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461213746
Category : Mathematics
Languages : en
Pages : 331
Book Description
Problems and Methods in Mathematical Physics
Author: Johannes Elschner
Publisher: Birkhäuser
ISBN: 3034882769
Category : Science
Languages : en
Pages : 530
Book Description
This volume presents the proceedings of the 11th Conference on Problems and Methods in Mathematical Physics (11th TMP), held in Chemnitz, March 25-28, 1999. The conference was dedicated to the memory of Siegfried Prössdorf, who made important contributions to the theory and numerical analysis of operator equations and their applications in mathematical physics and mechanics. The main part of the book comprises original research papers. The topics are ranging from integral and pseudodifferential equations, boundary value problems, operator theory, boundary element and wavelet methods, approximation theory and inverse problems to various concrete problems and applications in physics and engineering, and reflect Prössdorf's broad spectrum of research activities. The volume also contains articles describing the life and mathematical achievements of Siegfried Prössdorf and includes a list of his publications. The book is addressed to a wide audience in the mathematical and engineering sciences.
Publisher: Birkhäuser
ISBN: 3034882769
Category : Science
Languages : en
Pages : 530
Book Description
This volume presents the proceedings of the 11th Conference on Problems and Methods in Mathematical Physics (11th TMP), held in Chemnitz, March 25-28, 1999. The conference was dedicated to the memory of Siegfried Prössdorf, who made important contributions to the theory and numerical analysis of operator equations and their applications in mathematical physics and mechanics. The main part of the book comprises original research papers. The topics are ranging from integral and pseudodifferential equations, boundary value problems, operator theory, boundary element and wavelet methods, approximation theory and inverse problems to various concrete problems and applications in physics and engineering, and reflect Prössdorf's broad spectrum of research activities. The volume also contains articles describing the life and mathematical achievements of Siegfried Prössdorf and includes a list of his publications. The book is addressed to a wide audience in the mathematical and engineering sciences.
Clifford Algebras and their Applications in Mathematical Physics
Author: Rafał Abłamowicz
Publisher: Springer Science & Business Media
ISBN: 9780817641832
Category : Mathematics
Languages : en
Pages : 346
Book Description
The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.
Publisher: Springer Science & Business Media
ISBN: 9780817641832
Category : Mathematics
Languages : en
Pages : 346
Book Description
The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.
Theoretical Concepts of Quantum Mechanics
Author: Mohammad Reza Pahlavani
Publisher: BoD – Books on Demand
ISBN: 9535100882
Category : Science
Languages : en
Pages : 614
Book Description
Quantum theory as a scientific revolution profoundly influenced human thought about the universe and governed forces of nature. Perhaps the historical development of quantum mechanics mimics the history of human scientific struggles from their beginning. This book, which brought together an international community of invited authors, represents a rich account of foundation, scientific history of quantum mechanics, relativistic quantum mechanics and field theory, and different methods to solve the Schrodinger equation. We wish for this collected volume to become an important reference for students and researchers.
Publisher: BoD – Books on Demand
ISBN: 9535100882
Category : Science
Languages : en
Pages : 614
Book Description
Quantum theory as a scientific revolution profoundly influenced human thought about the universe and governed forces of nature. Perhaps the historical development of quantum mechanics mimics the history of human scientific struggles from their beginning. This book, which brought together an international community of invited authors, represents a rich account of foundation, scientific history of quantum mechanics, relativistic quantum mechanics and field theory, and different methods to solve the Schrodinger equation. We wish for this collected volume to become an important reference for students and researchers.
na
Author: Eduardo Bayro-Corrochano
Publisher: Springer Science & Business Media
ISBN: 1849961107
Category : Computers
Languages : en
Pages : 527
Book Description
Geometric algebra provides a rich and general mathematical framework for the development of solutions, concepts and computer algorithms without losing geometric insight into the problem in question. Many current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra, such as multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras, and conformal geometry. Geometric Algebra Computing in Engineering and Computer Science presents contributions from an international selection of experts in the field. This useful text/reference offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. The book also provides an introduction to advanced screw theory and conformal geometry. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Topics and features: Provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework Introduces nonspecialists to screw theory in the geometric algebra framework, offering a tutorial on conformal geometric algebra and an overview of recent applications of geometric algebra Explores new developments in the domain of Clifford Fourier Transforms and Clifford Wavelet Transform, including novel applications of Clifford Fourier transforms for 3D visualization and colour image spectral analysis Presents a detailed study of fluid flow problems with quaternionic analysis Examines new algorithms for geometric neural computing and cognitive systems Analyzes computer software packages for extensive calculations in geometric algebra, investigating the algorithmic complexity of key geometric operations and how the program code can be optimized for real-time computations The book is an essential resource for computer scientists, applied physicists, AI researchers and mechanical and electrical engineers. It will also be of value to graduate students and researchers interested in a modern language for geometric computing. Prof. Dr. Eng. Eduardo Bayro-Corrochano is a Full Professor of Geometric Computing at Cinvestav, Mexico. He is the author of the Springer titles Geometric Computing for Perception Action Systems, Handbook of Geometric Computing, and Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Prof. Dr. Gerik Scheuermann is a Full Professor at the University of Leipzig, Germany. He is the author of the Springer title Topology-Based Methods in Visualization II.
Publisher: Springer Science & Business Media
ISBN: 1849961107
Category : Computers
Languages : en
Pages : 527
Book Description
Geometric algebra provides a rich and general mathematical framework for the development of solutions, concepts and computer algorithms without losing geometric insight into the problem in question. Many current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra, such as multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras, and conformal geometry. Geometric Algebra Computing in Engineering and Computer Science presents contributions from an international selection of experts in the field. This useful text/reference offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. The book also provides an introduction to advanced screw theory and conformal geometry. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Topics and features: Provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework Introduces nonspecialists to screw theory in the geometric algebra framework, offering a tutorial on conformal geometric algebra and an overview of recent applications of geometric algebra Explores new developments in the domain of Clifford Fourier Transforms and Clifford Wavelet Transform, including novel applications of Clifford Fourier transforms for 3D visualization and colour image spectral analysis Presents a detailed study of fluid flow problems with quaternionic analysis Examines new algorithms for geometric neural computing and cognitive systems Analyzes computer software packages for extensive calculations in geometric algebra, investigating the algorithmic complexity of key geometric operations and how the program code can be optimized for real-time computations The book is an essential resource for computer scientists, applied physicists, AI researchers and mechanical and electrical engineers. It will also be of value to graduate students and researchers interested in a modern language for geometric computing. Prof. Dr. Eng. Eduardo Bayro-Corrochano is a Full Professor of Geometric Computing at Cinvestav, Mexico. He is the author of the Springer titles Geometric Computing for Perception Action Systems, Handbook of Geometric Computing, and Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Prof. Dr. Gerik Scheuermann is a Full Professor at the University of Leipzig, Germany. He is the author of the Springer title Topology-Based Methods in Visualization II.
Inner Product Spaces and Applications
Author: T M Rassias
Publisher: CRC Press
ISBN: 9780582317116
Category : Mathematics
Languages : en
Pages : 284
Book Description
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
Publisher: CRC Press
ISBN: 9780582317116
Category : Mathematics
Languages : en
Pages : 284
Book Description
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
Functional Analysis with Current Applications in Science, Technology and Industry
Author: Martin Brokate
Publisher: CRC Press
ISBN: 9780582312609
Category : Mathematics
Languages : en
Pages : 136
Book Description
This volume constitutes the proceedings of a conference on functional analysis and its applications, which took place in India during December 1996. Topics include topological vector spaces, Banach algebras, meromorphic functions, partial differential equations, variational equations and inequalities, optimization, wavelets, elastroplasticity, numerical integration, fractal image compression, reservoir simulation, forest management, and industrial maths.
Publisher: CRC Press
ISBN: 9780582312609
Category : Mathematics
Languages : en
Pages : 136
Book Description
This volume constitutes the proceedings of a conference on functional analysis and its applications, which took place in India during December 1996. Topics include topological vector spaces, Banach algebras, meromorphic functions, partial differential equations, variational equations and inequalities, optimization, wavelets, elastroplasticity, numerical integration, fractal image compression, reservoir simulation, forest management, and industrial maths.