Author: Der-San Chen
Publisher: John Wiley & Sons
ISBN: 0470373067
Category : Mathematics
Languages : en
Pages : 489
Book Description
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
Applied Integer Programming
Author: Der-San Chen
Publisher: John Wiley & Sons
ISBN: 0470373067
Category : Mathematics
Languages : en
Pages : 489
Book Description
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
Publisher: John Wiley & Sons
ISBN: 0470373067
Category : Mathematics
Languages : en
Pages : 489
Book Description
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
Integer Programming
Author: Michele Conforti
Publisher: Springer
ISBN: 331911008X
Category : Business & Economics
Languages : en
Pages : 466
Book Description
This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
Publisher: Springer
ISBN: 331911008X
Category : Business & Economics
Languages : en
Pages : 466
Book Description
This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Integer and Mixed Programming: Theory and Applications
Author: Henry-Laborde?Re
Publisher: Academic Press
ISBN: 0080956467
Category : Computers
Languages : en
Pages : 391
Book Description
Integer and Mixed Programming: Theory and Applications
Publisher: Academic Press
ISBN: 0080956467
Category : Computers
Languages : en
Pages : 391
Book Description
Integer and Mixed Programming: Theory and Applications
Theory of Linear and Integer Programming
Author: Alexander Schrijver
Publisher: John Wiley & Sons
ISBN: 9780471982326
Category : Mathematics
Languages : en
Pages : 488
Book Description
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Publisher: John Wiley & Sons
ISBN: 9780471982326
Category : Mathematics
Languages : en
Pages : 488
Book Description
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Linear Integer Programming
Author: Elias Munapo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110703025
Category : Computers
Languages : en
Pages : 200
Book Description
This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110703025
Category : Computers
Languages : en
Pages : 200
Book Description
This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated.
Integer Programming
Author: Hamdy A. Taha
Publisher: Academic Press
ISBN: 1483260372
Category : Mathematics
Languages : en
Pages : 395
Book Description
Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming. Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other chapters consider the branch-and-bound methods, the cutting-plane method, and its closely related asymptotic problem. This book discusses as well several specialized algorithms for certain well-known integer models and provides an alternative approach to the solution of the integer problem. The final chapter deals with a number of observations about the formulations and executions of integer programming models. This book is a valuable resource for industrial engineers and research workers.
Publisher: Academic Press
ISBN: 1483260372
Category : Mathematics
Languages : en
Pages : 395
Book Description
Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming. Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other chapters consider the branch-and-bound methods, the cutting-plane method, and its closely related asymptotic problem. This book discusses as well several specialized algorithms for certain well-known integer models and provides an alternative approach to the solution of the integer problem. The final chapter deals with a number of observations about the formulations and executions of integer programming models. This book is a valuable resource for industrial engineers and research workers.
Integer Programming
Author: John K. Karlof
Publisher: CRC Press
ISBN: 1420039598
Category : Business & Economics
Languages : en
Pages : 333
Book Description
Integer Programming: Theory and Practice contains refereed articles that explore both theoretical aspects of integer programming as well as major applications. This volume begins with a description of new constructive and iterative search methods for solving the Boolean optimization problem (BOOP). Following a review of recent developments
Publisher: CRC Press
ISBN: 1420039598
Category : Business & Economics
Languages : en
Pages : 333
Book Description
Integer Programming: Theory and Practice contains refereed articles that explore both theoretical aspects of integer programming as well as major applications. This volume begins with a description of new constructive and iterative search methods for solving the Boolean optimization problem (BOOP). Following a review of recent developments
Mixed Integer Nonlinear Programming
Author: Jon Lee
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687
Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687
Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Routing, Flow, and Capacity Design in Communication and Computer Networks
Author: Michal Pioro
Publisher: Elsevier
ISBN: 0080516432
Category : Computers
Languages : en
Pages : 795
Book Description
In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice.Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. - Written by leading researchers with a combined 40 years of industrial and academic network design experience. - Considers the development of design models for different technologies, including TCP/IP, IDN, MPLS, ATM, SONET/SDH, and WDM. - Discusses recent topics such as shortest path routing and fair bandwidth assignment in IP/MPLS networks. - Addresses proper multi-layer modeling across network layers using different technologies—for example, IP over ATM over SONET, IP over WDM, and IDN over SONET. - Covers restoration-oriented design methods that allow recovery from failures of large-capacity transport links and transit nodes. - Presents, at the end of each chapter, exercises useful to both students and practitioners.
Publisher: Elsevier
ISBN: 0080516432
Category : Computers
Languages : en
Pages : 795
Book Description
In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice.Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. - Written by leading researchers with a combined 40 years of industrial and academic network design experience. - Considers the development of design models for different technologies, including TCP/IP, IDN, MPLS, ATM, SONET/SDH, and WDM. - Discusses recent topics such as shortest path routing and fair bandwidth assignment in IP/MPLS networks. - Addresses proper multi-layer modeling across network layers using different technologies—for example, IP over ATM over SONET, IP over WDM, and IDN over SONET. - Covers restoration-oriented design methods that allow recovery from failures of large-capacity transport links and transit nodes. - Presents, at the end of each chapter, exercises useful to both students and practitioners.