Instructor's Manual to Accompany Designing Efficient Algorithms for Parallel Computers

Instructor's Manual to Accompany Designing Efficient Algorithms for Parallel Computers PDF Author: Michael J. Quinn
Publisher:
ISBN: 9780070510722
Category : Parallel computers
Languages : en
Pages : 36

Get Book Here

Book Description

Instructor's Manual to Accompany Designing Efficient Algorithms for Parallel Computers

Instructor's Manual to Accompany Designing Efficient Algorithms for Parallel Computers PDF Author: Michael J. Quinn
Publisher:
ISBN: 9780070510722
Category : Parallel computers
Languages : en
Pages : 36

Get Book Here

Book Description


Algorithms and Data Structures

Algorithms and Data Structures PDF Author: Frank Dehne
Publisher: Springer
ISBN: 3319218409
Category : Computers
Languages : en
Pages : 657

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 14th Algorithms and Data Structures Symposium, WADS 2015, held in Victoria, BC, Canada, August 2015. The 54 revised full papers presented in this volume were carefully reviewed and selected from 148 submissions. The Algorithms and Data Structures Symposium - WADS (formerly Workshop on Algorithms And Data Structures), which alternates with the Scandinavian Workshop on Algorithm Theory, is intended as a forum for researchers in the area of design and analysis of algorithms and data structures. WADS includes papers presenting original research on algorithms and data structures in all areas, including bioinformatics, combinatorics, computational geometry, databases, graphics, and parallel and distributed computing.

Introduction to Parallel Computing

Introduction to Parallel Computing PDF Author: Ananth Grama
Publisher: Pearson Education
ISBN: 9780201648652
Category : Computers
Languages : en
Pages : 664

Get Book Here

Book Description
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519

Get Book Here

Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Introduction to Algorithms, third edition

Introduction to Algorithms, third edition PDF Author: Thomas H. Cormen
Publisher: MIT Press
ISBN: 0262258102
Category : Computers
Languages : en
Pages : 1313

Get Book Here

Book Description
The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.

Introduction To Design And Analysis Of Algorithms, 2/E

Introduction To Design And Analysis Of Algorithms, 2/E PDF Author: Anany Levitin
Publisher: Pearson Education India
ISBN: 9788131718377
Category : Algorithms
Languages : en
Pages : 548

Get Book Here

Book Description


Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Computer Books and Serials in Print

Computer Books and Serials in Print PDF Author:
Publisher:
ISBN:
Category : Computer science literature
Languages : en
Pages : 720

Get Book Here

Book Description


Algorithm Design

Algorithm Design PDF Author: Michael T. Goodrich
Publisher: John Wiley & Sons
ISBN: 0471383651
Category : Computers
Languages : en
Pages : 722

Get Book Here

Book Description
Michael Goodrich and Roberto Tamassia, authors of the successful, Data Structures and Algorithms in Java, 2/e, have written Algorithm Engineering, a text designed to provide a comprehensive introduction to the design, implementation and analysis of computer algorithms and data structures from a modern perspective. This book offers theoretical analysis techniques as well as algorithmic design patterns and experimental methods for the engineering of algorithms. Market: Computer Scientists; Programmers.

The Elements of Statistical Learning

The Elements of Statistical Learning PDF Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 0387216065
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.