Author: E. Tirapegui
Publisher: Springer Science & Business Media
ISBN: 9401119066
Category : Mathematics
Languages : en
Pages : 365
Book Description
We have classified the articles presented here in two Sections according to their general content. In Part I we have included papers which deal with statistical mechanics, math ematical aspects of dynamical systems and sthochastic effects in nonequilibrium systems. Part II is devoted mainly to instabilities and self-organization in extended nonequilibrium systems. The study of partial differential equations by numerical and analytic methods plays a great role here and many works are related to this subject. Most recent developments in this fascinating and rapidly growing area are discussed. PART I STATISTICAL MECHANICS AND RELATED TOPICS NONEQUILIBRIUM POTENTIALS FOR PERIOD DOUBLING R. Graham and A. Hamm Fachbereich Physik, Universitiit Gesamthochschule Essen D4300 Essen 1 Germany ABSTRACT. In this lecture we consider the influence of weak stochastic perturbations on period doubling using nonequilibrium potentials, a concept which is explained in section 1 and formulated for the case of maps in section 2. In section 3 nonequilibrium potentials are considered for the family of quadratic maps (a) at the Feigenbaum 'attractor' with Gaussian noise, (b) for more general non Gaussian noise, and (c) for the case of a strange repeller. Our discussion will be informal. A more detailed account of this and related material can be found in our papers [1-3] and in the reviews [4, 5], where further references to related work are also given. 1.
Instabilities and Nonequilibrium Structures IV
Many-Particle Dynamics and Kinetic Equations
Author: C. Cercignani
Publisher: Springer Science & Business Media
ISBN: 9401155585
Category : Science
Languages : en
Pages : 252
Book Description
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size.
Publisher: Springer Science & Business Media
ISBN: 9401155585
Category : Science
Languages : en
Pages : 252
Book Description
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size.
Evolution Processes and the Feynman-Kac Formula
Author: Brian Jefferies
Publisher: Springer Science & Business Media
ISBN: 9401586608
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a cen tral topic of this work. However, the various notions of integration developed here are intimately connected with a specific application-the representation of evolutions by func tional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an un derlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures-a view largely motivated by the pervasive use of path integrals in quantum physics.
Publisher: Springer Science & Business Media
ISBN: 9401586608
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a cen tral topic of this work. However, the various notions of integration developed here are intimately connected with a specific application-the representation of evolutions by func tional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an un derlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures-a view largely motivated by the pervasive use of path integrals in quantum physics.
Advances in Chemical Physics
Author: Ilya Prigogine
Publisher: John Wiley & Sons
ISBN: 0470142219
Category : Science
Languages : en
Pages : 592
Book Description
Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
Publisher: John Wiley & Sons
ISBN: 0470142219
Category : Science
Languages : en
Pages : 592
Book Description
Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
Quantum Chaos and Mesoscopic Systems
Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9780792344599
Category : Mathematics
Languages : en
Pages : 362
Book Description
4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.
Publisher: Springer Science & Business Media
ISBN: 9780792344599
Category : Mathematics
Languages : en
Pages : 362
Book Description
4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.
Collective Beings
Author: Gianfranco Minati
Publisher: Springer Science & Business Media
ISBN: 0387359419
Category : Science
Languages : en
Pages : 474
Book Description
This book offers an overview on the background to systemics. It introduces the concept of Collective Being as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The principles underlying this approach are grounded on the theoretical role of the observer. This view allows to model in a more suitable way complex systems, such as in physics, biology and economics.
Publisher: Springer Science & Business Media
ISBN: 0387359419
Category : Science
Languages : en
Pages : 474
Book Description
This book offers an overview on the background to systemics. It introduces the concept of Collective Being as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The principles underlying this approach are grounded on the theoretical role of the observer. This view allows to model in a more suitable way complex systems, such as in physics, biology and economics.
Quantized Vortex Dynamics and Superfluid Turbulence
Author: C.F. Barenghi
Publisher: Springer Science & Business Media
ISBN: 3540422269
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.
Publisher: Springer Science & Business Media
ISBN: 3540422269
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.
Optimal Filtering
Author: V.N. Fomin
Publisher: Springer Science & Business Media
ISBN: 9401153264
Category : Mathematics
Languages : en
Pages : 387
Book Description
This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to [27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems.
Publisher: Springer Science & Business Media
ISBN: 9401153264
Category : Mathematics
Languages : en
Pages : 387
Book Description
This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to [27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems.
Path Integrals For Stochastic Processes: An Introduction
Author: Horacio Sergio Wio
Publisher: World Scientific
ISBN: 9814449059
Category : Science
Languages : en
Pages : 174
Book Description
This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950's. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy).The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations. remove /a
Publisher: World Scientific
ISBN: 9814449059
Category : Science
Languages : en
Pages : 174
Book Description
This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950's. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy).The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations. remove /a
Stochasticity and Quantum Chaos
Author: Z. Haba
Publisher: Springer Science & Business Media
ISBN: 9401101698
Category : Science
Languages : en
Pages : 222
Book Description
These are the proceedings of the Third Max Born Symposium which took place at SobOtka Castle in September 1993. The Symposium is organized annually by the Institute of Theoretical Physics of the University of Wroclaw. Max Born was a student and later on an assistant at the University of Wroclaw (Wroclaw belonged to Germany at this time and was called Breslau). The topic of the Max Born Sympo sium varies each year reflecting the developement of theoretical physics. The subject of this Symposium "Stochasticity and quantum chaos" may well be considered as a continuation of the research interest of Max Born. Recall that Born treats his "Lectures on the mechanics of the atom" (published in 1925) as a nrst volume of a complete monograph (supposedly to be written by another person). His lectures concern the quantum mechanics of integrable systems. The quantum mechanics of non-integrable systems was the subject of the Third Max Born Symposium. It is known that classical non-integrable Hamiltonian systems show a chaotic behaviour. On the other hand quantum systems bounded in space are quasiperi odic. We believe that quantum systems have a reasonable classical limit. It is not clear how to reconcile the seemingly regular behaviour of quantum systems with the possible chaotic properties of their classical counterparts. The quantum proper ties of classically chaotic systems constitute the main subject of these Proceedings. Other topics discussed are: the quantum mechanics of dissipative systems, quantum measurement theory, the role of noise in classical and quantum systems.
Publisher: Springer Science & Business Media
ISBN: 9401101698
Category : Science
Languages : en
Pages : 222
Book Description
These are the proceedings of the Third Max Born Symposium which took place at SobOtka Castle in September 1993. The Symposium is organized annually by the Institute of Theoretical Physics of the University of Wroclaw. Max Born was a student and later on an assistant at the University of Wroclaw (Wroclaw belonged to Germany at this time and was called Breslau). The topic of the Max Born Sympo sium varies each year reflecting the developement of theoretical physics. The subject of this Symposium "Stochasticity and quantum chaos" may well be considered as a continuation of the research interest of Max Born. Recall that Born treats his "Lectures on the mechanics of the atom" (published in 1925) as a nrst volume of a complete monograph (supposedly to be written by another person). His lectures concern the quantum mechanics of integrable systems. The quantum mechanics of non-integrable systems was the subject of the Third Max Born Symposium. It is known that classical non-integrable Hamiltonian systems show a chaotic behaviour. On the other hand quantum systems bounded in space are quasiperi odic. We believe that quantum systems have a reasonable classical limit. It is not clear how to reconcile the seemingly regular behaviour of quantum systems with the possible chaotic properties of their classical counterparts. The quantum proper ties of classically chaotic systems constitute the main subject of these Proceedings. Other topics discussed are: the quantum mechanics of dissipative systems, quantum measurement theory, the role of noise in classical and quantum systems.