Insights Into Chemical Reaction Mechanisms by Computational Approaches

Insights Into Chemical Reaction Mechanisms by Computational Approaches PDF Author: Martin Spichty
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Get Book Here

Book Description

Insights Into Chemical Reaction Mechanisms by Computational Approaches

Insights Into Chemical Reaction Mechanisms by Computational Approaches PDF Author: Martin Spichty
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Get Book Here

Book Description


Computational Approaches to Biochemical Reactivity

Computational Approaches to Biochemical Reactivity PDF Author: Gábor Náray-Szabó
Publisher: Springer Science & Business Media
ISBN: 0306469340
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
A quantitative description of the action of enzymes and other biological systems is both a challenge and a fundamental requirement for further progress in our und- standing of biochemical processes. This can help in practical design of new drugs and in the development of artificial enzymes as well as in fundamental understanding of the factors that control the activity of biological systems. Structural and biochemical st- ies have yielded major insights about the action of biological molecules and the mechanism of enzymatic reactions. However it is not entirely clear how to use this - portant information in a consistent and quantitative analysis of the factors that are - sponsible for rate acceleration in enzyme active sites. The problem is associated with the fact that reaction rates are determined by energetics (i. e. activation energies) and the available experimental methods by themselves cannot provide a correlation - tween structure and energy. Even mutations of specific active site residues, which are extremely useful, cannot tell us about the totality of the interaction between the active site and the substrate. In fact, short of inventing experiments that allow one to measure the forces in enzyme active sites it is hard to see how can one use a direct experimental approach to unambiguously correlate the structure and function of enzymes. In fact, in view of the complexity of biological systems it seems that only computers can handle the task of providing a quantitative structure-function correlation.

Computational Quantum Chemistry

Computational Quantum Chemistry PDF Author: Masoud Soroush
Publisher: Elsevier
ISBN: 0128159847
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engineering considerably for the past two decades. The book puts these advances into perspective. It also allows you to access the most up-to-date research and CQC methods applicable to polymerization reactions in a single volume. The content is rigorous yet accessible to graduate students as well as researchers who need a reference of state-of-the-art CQC methods with polymerization applications. - Consolidates more than 10 years of theoretical polymerization reaction research currently scattered across journal articles - Accessibly presents CQC methods applicable to polymerization reactions - Provides researchers with a one-stop source of the latest theoretical developments in polymer reaction engineering

Insights into Enzyme Mechanisms and Functions from Experimental and Computational Methods

Insights into Enzyme Mechanisms and Functions from Experimental and Computational Methods PDF Author:
Publisher: Academic Press
ISBN: 0128052414
Category : Science
Languages : en
Pages : 236

Get Book Here

Book Description
Insights into Enzyme Mechanisms and Functions from Experimental and Computational Methods is the latest volume in the popular Advances in Protein Chemistry and Structural Biology series, an essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins, with each thematically organized volume guest edited by leading experts in a broad range of protein-related topics. - Provides cutting-edge developments in protein chemistry and structural biology - Written by authorities in their respective fields - Targeted to a wide audience of researchers, specialists, and students

Insights Into Chemical Reactions at Interfaces from Enhanced Sampling and Global Optimization Algorithms

Insights Into Chemical Reactions at Interfaces from Enhanced Sampling and Global Optimization Algorithms PDF Author: Thomas Kris Ludwig
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Many important technologies and current scientific challenges involve chemical reactions that occur in complex environments, such as surfaces/interfaces or condensed phases which have complex structures and dynamics under reaction conditions. Engineering catalysts and processes for these reactions depends on developing an understanding of the mechanisms that determine the rates of these reactions. Applying computational modeling to catalytic reactions is challenging for several reasons; my work demonstrates several strategies for modeling increasingly complex chemical reactions. Accurate theoretical study of catalytic interfaces and solvent effects has been an active area of research for decades, as it requires simultaneously including detailed electronic structure and chemisorption effects from the catalyst and the many intermolecular interactions and long-range electrostatic interactions from the solvent, electrolyte or other surrounding environment, all of which must be sampled over an ensemble of configurations. I address this challenge by systematically applying global optimization algorithms to models of solvent-metal interfaces. I explain trends in adsorbate-electrolyte interactions and relate these to the adsorbate dipole moment and hydrogen bonding affinity, and shed new light on models of ion promotion effects. And I extend these methods to study the interfaces of nonaqueous solvents with transition metals, uncovering several new insights into the effects of solvent chemisorption on a variety of metal surfaces. The effect of temperature on the reaction free energies and barriers of elementary chemical reactions on surfaces is often calculated using the harmonic approximation. This is due to the computational expense of first principles calculations and the simplicity of the harmonic approximation. Often these methods rely on system-specific intuition and assumptions regarding which configurations and types of anharmonicities may be important. More rigorous, scalable and efficient free energy and enhanced sampling methods would be useful in addressing this challenge. In this thesis I describe applying a state-of-the art machine learning based enhanced sampling method to a density functional theory (DFT) model of a prototypical surface reaction. This method calculates the free energy profile of the reaction more efficiently (fewer calculations required) than other currently widely used free energy methods, while exploring and identifying the critical states in the reaction mechanism. I also apply metadyamics to study nitrogen dissociation in lithium, demonstrating the use of an enhanced sampling algorithm for the exploration of reaction mechanisms and calculation of rate constants of a surface reaction. This work is a step toward systematic, generalizable methods for the computational study of chemical reactions in complex environments.

The Reaction Path in Chemistry: Current Approaches and Perspectives

The Reaction Path in Chemistry: Current Approaches and Perspectives PDF Author: D. Heidrich
Publisher: Springer Science & Business Media
ISBN: 9401585393
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics". It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.

Chemistry at Extreme Conditions

Chemistry at Extreme Conditions PDF Author: M.R. Manaa
Publisher: Elsevier
ISBN: 0080456995
Category : Science
Languages : en
Pages : 525

Get Book Here

Book Description
Chemistry at Extreme Conditions covers those chemical processes that occur in the pressure regime of 0.5–200 GPa and temperature range of 500–5000 K and includes such varied phenomena as comet collisions, synthesis of super-hard materials, detonation and combustion of energetic materials, and organic conversions in the interior of planets. The book provides an insight into this active and exciting field of research. Written by top researchers in the field, the book covers state of the art experimental advances in high-pressure technology, from shock physics to laser-heating techniques to study the nature of the chemical bond in transient processes. The chapters have been conventionally organised into four broad themes of applications: biological and bioinorganic systems; Experimental works on the transformations in small molecular systems; Theoretical methods and computational modeling of shock-compressed materials; and experimental and computational approaches in energetic materials research.* Extremely practical book containing up-to-date research in high-pressure science * Includes chapters on recent advances in computer modelling* Review articles can be used as reference guide

Understanding Organometallic Reaction Mechanisms and Catalysis

Understanding Organometallic Reaction Mechanisms and Catalysis PDF Author: Valentin P. Ananikov
Publisher: John Wiley & Sons
ISBN: 3527678220
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper understanding of the underlying reaction mechanism and correlation between molecular structure and reactivity. The contributions represent a wealth of first-hand information from renowned experts working in these disciplines, covering such topics as activation of small molecules, C-C and C-Heteroatom bonds formation, cross-coupling reactions, carbon dioxide converison, homogeneous and heterogeneous transition metal catalysis and metal-graphene systems. With the knowledge gained, the reader will be able to improve existing reaction protocols and rationally design more efficient catalysts or selective reactions. An indispensable source of information for synthetic, analytical, and theoretical chemists in academia and industry.

Quantum Chemistry in the Age of Machine Learning

Quantum Chemistry in the Age of Machine Learning PDF Author: Pavlo O. Dral
Publisher: Elsevier
ISBN: 0323886043
Category : Science
Languages : en
Pages : 702

Get Book Here

Book Description
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry

Computational Approaches for Studying Enzyme Mechanism Part A

Computational Approaches for Studying Enzyme Mechanism Part A PDF Author:
Publisher: Academic Press
ISBN: 0128053631
Category : Science
Languages : en
Pages : 560

Get Book Here

Book Description
Computational Approaches for Studying Enzyme Mechanism Part A, is the first of two volumes in the Methods in Enzymology series, focusses on computational approaches for studying enzyme mechanism. The serial achieves the critically acclaimed gold standard of laboratory practices and remains one of the most highly respected publications in the molecular biosciences. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 550 volumes, the series remains a prominent and essential publication for researchers in all fields of life sciences and biotechnology, including biochemistry, chemical biology, microbiology, synthetic biology, cancer research, and genetics to name a few. - Focuses on computational approaches for studying enzyme mechanism - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in intermediate filament associated proteins, and contains sections on such topics as lamin-associated proteins, intermediate filament-associated proteins and plakin, and other cytoskeletal cross-linkers