Author: A. Ghatak
Publisher: Springer Science & Business Media
ISBN: 146158762X
Category : Science
Languages : en
Pages : 273
Book Description
The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.
Inhomogeneous Optical Waveguides
Author: A. Ghatak
Publisher: Springer Science & Business Media
ISBN: 146158762X
Category : Science
Languages : en
Pages : 273
Book Description
The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.
Publisher: Springer Science & Business Media
ISBN: 146158762X
Category : Science
Languages : en
Pages : 273
Book Description
The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.
Fundamentals of Optical Waveguides
Author: Katsunari Okamoto
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Inhomogeneous Optical Waveguides
Author: Ajoy Ghatak
Publisher: Springer
ISBN: 9781461587637
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.
Publisher: Springer
ISBN: 9781461587637
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.
Optical Waveguide Theory by the Finite Element Method
Author: Masanori Koshiba
Publisher: Springer
ISBN: 9789401047135
Category : Science
Languages : en
Pages : 0
Book Description
Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.
Publisher: Springer
ISBN: 9789401047135
Category : Science
Languages : en
Pages : 0
Book Description
Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.
The Essence of Dielectric Waveguides
Author: C. Yeh
Publisher: Springer Science & Business Media
ISBN: 0387497994
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
The Essence of Dielectric Waveguides provides an overview of the fundamental behavior of guided waves, essential to finding and interpreting the results of electromagnetic waveguide problems. Clearly and concisely written as well as brilliantly organized, this volume includes a detailed description of the fundamentals of electromagnetics, as well as a new discussion on boundary conditions and attenuation. It also covers the propagation characteristics of guided waves along classical canonical dielectric structures – planar, circular cylindrical, rectangular and elliptical waveguides. What’s more, the authors have included extensive coverage of inhomogeneous structures and approximate methods, as well as several powerful numerical approaches specifically applicable to dielectric waveguides.
Publisher: Springer Science & Business Media
ISBN: 0387497994
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
The Essence of Dielectric Waveguides provides an overview of the fundamental behavior of guided waves, essential to finding and interpreting the results of electromagnetic waveguide problems. Clearly and concisely written as well as brilliantly organized, this volume includes a detailed description of the fundamentals of electromagnetics, as well as a new discussion on boundary conditions and attenuation. It also covers the propagation characteristics of guided waves along classical canonical dielectric structures – planar, circular cylindrical, rectangular and elliptical waveguides. What’s more, the authors have included extensive coverage of inhomogeneous structures and approximate methods, as well as several powerful numerical approaches specifically applicable to dielectric waveguides.
Optical Waveguides
Author: María L. Calvo
Publisher: CRC Press
ISBN: 1420017772
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.
Publisher: CRC Press
ISBN: 1420017772
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.
Progress in Planar Optical Waveguides
Author: Xianping Wang
Publisher: Springer
ISBN: 3662489848
Category : Science
Languages : en
Pages : 251
Book Description
This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.
Publisher: Springer
ISBN: 3662489848
Category : Science
Languages : en
Pages : 251
Book Description
This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.
Coupled Mode Theory
Author: Hongjia Huang
Publisher: VSP
ISBN: 9789067640336
Category : Science
Languages : en
Pages : 390
Book Description
This book deals with microwave and optical transmission from the unique viewpoint of Maxwell's theory, and via the consistent theoretical framework of coupled modes (ideal modes, local modes and super modes). A feature of the book is its particular emphasis on the usefulness of the coupled mode theory. The author has carried out to the end the solution of a diversity of waveguide problems, such as curved waveguides, tapered waveguides, tolerances of imperfections for a microwave and optical transmission line, etc. Another feature reflected in this volume is its presentation of adequate background material required for understanding the theory, which often appears complicated and difficult in the literature. The book begins with phenomenological theories of coupled modes, with the intention to familiarize the reader in a simple way with the basic concepts relevant to a further development of the coupled mode theory. Solutions of the coupled mode equations with constant or variable coefficients and orthogonal expansions in waveguides, whose combination represents a complete solution of Maxwell's equations, are treated in mathematical detail, with sufficient physical description to elucidate the underlying principles.
Publisher: VSP
ISBN: 9789067640336
Category : Science
Languages : en
Pages : 390
Book Description
This book deals with microwave and optical transmission from the unique viewpoint of Maxwell's theory, and via the consistent theoretical framework of coupled modes (ideal modes, local modes and super modes). A feature of the book is its particular emphasis on the usefulness of the coupled mode theory. The author has carried out to the end the solution of a diversity of waveguide problems, such as curved waveguides, tapered waveguides, tolerances of imperfections for a microwave and optical transmission line, etc. Another feature reflected in this volume is its presentation of adequate background material required for understanding the theory, which often appears complicated and difficult in the literature. The book begins with phenomenological theories of coupled modes, with the intention to familiarize the reader in a simple way with the basic concepts relevant to a further development of the coupled mode theory. Solutions of the coupled mode equations with constant or variable coefficients and orthogonal expansions in waveguides, whose combination represents a complete solution of Maxwell's equations, are treated in mathematical detail, with sufficient physical description to elucidate the underlying principles.
Contemporary Optics
Author: A. Ghatak
Publisher: Springer Science & Business Media
ISBN: 1468423584
Category : Science
Languages : en
Pages : 375
Book Description
With the advent of lasers, numerous applications of it such as optical information processing, holography, and optical communication have evolved. These applications have made the study of optics essential for scientists and engineers. The present volume, intended for senior under graduate and first-year graduate students, introduces basic concepts neces sary for an understanding of many of these applications. The book has grown out of lectures given at the Master's level to students of applied optics at the Indian Institute of Technology, New Delhi. Chapters 1-3 deal with geometrical optics, where we develop the theory behind the tracing of rays and calculation of aberrations. The formulas for aberrations are derived from first principles. We use the method in volving Luneburg's treatment starting from Hamilton's equations since we believe that this method is easy to understand. Chapters 4--8 discuss the more important aspects of contemporary physical optics, namely, diffraction, coherence, Fourier optics, and holog raphy. The basis for discussion is the scalar wave equation. A number of applications of spatial frequency filtering and holography are also discussed. With the availability of high-power laser beams, a large number of nonlinear optical phenomena have been studied. Of the various nonlinear phenomena, the self-focusing (or defocusing) of light beams due to the nonlinear dependence of the dielectric constant on intensity has received considerable attention. In Chapter 9 we discuss in detail the steady-state self-focusing of light beams.
Publisher: Springer Science & Business Media
ISBN: 1468423584
Category : Science
Languages : en
Pages : 375
Book Description
With the advent of lasers, numerous applications of it such as optical information processing, holography, and optical communication have evolved. These applications have made the study of optics essential for scientists and engineers. The present volume, intended for senior under graduate and first-year graduate students, introduces basic concepts neces sary for an understanding of many of these applications. The book has grown out of lectures given at the Master's level to students of applied optics at the Indian Institute of Technology, New Delhi. Chapters 1-3 deal with geometrical optics, where we develop the theory behind the tracing of rays and calculation of aberrations. The formulas for aberrations are derived from first principles. We use the method in volving Luneburg's treatment starting from Hamilton's equations since we believe that this method is easy to understand. Chapters 4--8 discuss the more important aspects of contemporary physical optics, namely, diffraction, coherence, Fourier optics, and holog raphy. The basis for discussion is the scalar wave equation. A number of applications of spatial frequency filtering and holography are also discussed. With the availability of high-power laser beams, a large number of nonlinear optical phenomena have been studied. Of the various nonlinear phenomena, the self-focusing (or defocusing) of light beams due to the nonlinear dependence of the dielectric constant on intensity has received considerable attention. In Chapter 9 we discuss in detail the steady-state self-focusing of light beams.
Fibre Optic Communication Devices
Author: Norbert Grote
Publisher: Springer Science & Business Media
ISBN: 3642564666
Category : Science
Languages : en
Pages : 486
Book Description
Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.
Publisher: Springer Science & Business Media
ISBN: 3642564666
Category : Science
Languages : en
Pages : 486
Book Description
Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.