Author: Amir Alexander
Publisher: Simon and Schuster
ISBN: 1780745338
Category : Science
Languages : en
Pages : 317
Book Description
On August 10, 1632, five leading Jesuits convened in a sombre Roman palazzo to pass judgment on a simple idea: that a continuous line is composed of distinct and limitlessly tiny parts. The doctrine would become the foundation of calculus, but on that fateful day the judges ruled that it was forbidden. With the stroke of a pen they set off a war for the soul of the modern world. Amir Alexander takes us from the bloody religious strife of the sixteenth century to the battlefields of the English civil war and the fierce confrontations between leading thinkers like Galileo and Hobbes. The legitimacy of popes and kings, as well as our modern beliefs in human liberty and progressive science, hung in the balance; the answer hinged on the infinitesimal. Pulsing with drama and excitement, Infinitesimal will forever change the way you look at a simple line.
Infinitesimal
Infinitesimal Analysis
Author: E.I. Gordon
Publisher: Springer Science & Business Media
ISBN: 940170063X
Category : Mathematics
Languages : en
Pages : 435
Book Description
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
Publisher: Springer Science & Business Media
ISBN: 940170063X
Category : Mathematics
Languages : en
Pages : 435
Book Description
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
Infinitesimal Calculus
Author: James M. Henle
Publisher: Courier Corporation
ISBN: 0486151018
Category : Mathematics
Languages : en
Pages : 146
Book Description
Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.
Publisher: Courier Corporation
ISBN: 0486151018
Category : Mathematics
Languages : en
Pages : 146
Book Description
Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.
A Primer of Infinitesimal Analysis
Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Cauchy's Calcul Infinitésimal
Author: Dennis M. Cates
Publisher: Springer
ISBN: 3030110362
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book is a complete English translation of Augustin-Louis Cauchy's historic 1823 text (his first devoted to calculus), Résumé des leçons sur le calcul infinitésimal, "Summary of Lectures on the Infinitesimal Calculus," originally written to benefit his École Polytechnique students in Paris. Within this single text, Cauchy succinctly lays out and rigorously develops all of the topics one encounters in an introductory study of the calculus, from his classic definition of the limit to his detailed analysis of the convergence properties of infinite series. In between, the reader will find a full treatment of differential and integral calculus, including the main theorems of calculus and detailed methods of differentiating and integrating a wide variety of functions. Real, single variable calculus is the main focus of the text, but Cauchy spends ample time exploring the extension of his rigorous development to include functions of multiple variables as well as complex functions. This translation maintains the same notation and terminology of Cauchy's original work in the hope of delivering as honest and true a Cauchy experience as possible so that the modern reader can experience his work as it may have been like 200 years ago. This book can be used with advantage today by anyone interested in the history of the calculus and analysis. In addition, it will serve as a particularly valuable supplement to a traditional calculus text for those readers who desire a way to create more texture in a conventional calculus class through the introduction of original historical sources.
Publisher: Springer
ISBN: 3030110362
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book is a complete English translation of Augustin-Louis Cauchy's historic 1823 text (his first devoted to calculus), Résumé des leçons sur le calcul infinitésimal, "Summary of Lectures on the Infinitesimal Calculus," originally written to benefit his École Polytechnique students in Paris. Within this single text, Cauchy succinctly lays out and rigorously develops all of the topics one encounters in an introductory study of the calculus, from his classic definition of the limit to his detailed analysis of the convergence properties of infinite series. In between, the reader will find a full treatment of differential and integral calculus, including the main theorems of calculus and detailed methods of differentiating and integrating a wide variety of functions. Real, single variable calculus is the main focus of the text, but Cauchy spends ample time exploring the extension of his rigorous development to include functions of multiple variables as well as complex functions. This translation maintains the same notation and terminology of Cauchy's original work in the hope of delivering as honest and true a Cauchy experience as possible so that the modern reader can experience his work as it may have been like 200 years ago. This book can be used with advantage today by anyone interested in the history of the calculus and analysis. In addition, it will serve as a particularly valuable supplement to a traditional calculus text for those readers who desire a way to create more texture in a conventional calculus class through the introduction of original historical sources.
The Metaphysical Principles of the Infinitesimal Calculus
Author: René Guénon
Publisher: Sophia Perennis
ISBN: 9780900588082
Category : Mathematics
Languages : en
Pages : 164
Book Description
Guénon's early and abiding interest in mathematics, like that of Plato, Pascal, Leibnitz, and many other metaphysicians of note, runs like a scarlet thread throughout his doctrinal studies. In this late text published just five years before his death, Guénon devotes an entire volume to questions regarding the nature of limits and the infinite with respect to the calculus both as a mathematical discipline and as symbolism for the initiatic path. This book therefore extends and complements the geometrical symbolism he employs in other works, especially The Symbolism of the Cross, The Multiple States of the Being, and Symbols of Sacred Science. According to Guénon, the concept 'infinite number' is a contradiction in terms. Infinity is a metaphysical concept at a higher level of reality than that of quantity, where all that can be expressed is the indefinite, not the infinite. But although quantity is the only level recognized by modern science, the numbers that express it also possess qualities, their quantitative aspect being merely their outer husk. Our reliance today on a mathematics of approximation and probability only further conceals the 'qualitative mathematics' of the ancient world, which comes to us most directly through the Pythagorean-Platonic tradition.
Publisher: Sophia Perennis
ISBN: 9780900588082
Category : Mathematics
Languages : en
Pages : 164
Book Description
Guénon's early and abiding interest in mathematics, like that of Plato, Pascal, Leibnitz, and many other metaphysicians of note, runs like a scarlet thread throughout his doctrinal studies. In this late text published just five years before his death, Guénon devotes an entire volume to questions regarding the nature of limits and the infinite with respect to the calculus both as a mathematical discipline and as symbolism for the initiatic path. This book therefore extends and complements the geometrical symbolism he employs in other works, especially The Symbolism of the Cross, The Multiple States of the Being, and Symbols of Sacred Science. According to Guénon, the concept 'infinite number' is a contradiction in terms. Infinity is a metaphysical concept at a higher level of reality than that of quantity, where all that can be expressed is the indefinite, not the infinite. But although quantity is the only level recognized by modern science, the numbers that express it also possess qualities, their quantitative aspect being merely their outer husk. Our reliance today on a mathematics of approximation and probability only further conceals the 'qualitative mathematics' of the ancient world, which comes to us most directly through the Pythagorean-Platonic tradition.
A treatise on infinitesimal calculus
Author: Bartholomew Price
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 588
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 588
Book Description
Infinitesimal Methods of Mathematical Analysis
Author: J S Pinto
Publisher: Horwood Publishing
ISBN: 9781898563990
Category : Mathematics
Languages : en
Pages : 274
Book Description
The most important material in the book is a hyperfinite theory of Schwartz distributions with applications to generalised Fourier transforms and harmonic analysis, and is not available in any other text on nonstandard methods."--Jacket.
Publisher: Horwood Publishing
ISBN: 9781898563990
Category : Mathematics
Languages : en
Pages : 274
Book Description
The most important material in the book is a hyperfinite theory of Schwartz distributions with applications to generalised Fourier transforms and harmonic analysis, and is not available in any other text on nonstandard methods."--Jacket.
A Treatise on Infinitesimal Calculus
Author: Bartholomew Price
Publisher: BoD – Books on Demand
ISBN: 3382332000
Category : Fiction
Languages : en
Pages : 646
Book Description
Reprint of the original, first published in 1857. The publishing house Anatiposi publishes historical books as reprints. Due to their age, these books may have missing pages or inferior quality. Our aim is to preserve these books and make them available to the public so that they do not get lost.
Publisher: BoD – Books on Demand
ISBN: 3382332000
Category : Fiction
Languages : en
Pages : 646
Book Description
Reprint of the original, first published in 1857. The publishing house Anatiposi publishes historical books as reprints. Due to their age, these books may have missing pages or inferior quality. Our aim is to preserve these books and make them available to the public so that they do not get lost.
Models for Smooth Infinitesimal Analysis
Author: Ieke Moerdijk
Publisher: Springer Science & Business Media
ISBN: 147574143X
Category : Mathematics
Languages : en
Pages : 401
Book Description
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
Publisher: Springer Science & Business Media
ISBN: 147574143X
Category : Mathematics
Languages : en
Pages : 401
Book Description
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.