Author: John Patton Burgess
Publisher:
ISBN:
Category :
Languages : en
Pages : 236
Book Description
Infinitary Languages and Descriptive Set Theory
Author: John Patton Burgess
Publisher:
ISBN:
Category :
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 236
Book Description
Invariant Descriptive Set Theory
Author: Su Gao
Publisher: CRC Press
ISBN: 9781584887942
Category : Mathematics
Languages : en
Pages : 392
Book Description
Presents Results from a Very Active Area of ResearchExploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathem
Publisher: CRC Press
ISBN: 9781584887942
Category : Mathematics
Languages : en
Pages : 392
Book Description
Presents Results from a Very Active Area of ResearchExploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathem
Classical Descriptive Set Theory
Author: Alexander Kechris
Publisher: Springer Science & Business Media
ISBN: 1461241901
Category : Mathematics
Languages : en
Pages : 419
Book Description
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.
Publisher: Springer Science & Business Media
ISBN: 1461241901
Category : Mathematics
Languages : en
Pages : 419
Book Description
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.
Descriptive Set Theoretic Methods in Automata Theory
Author: Michał Skrzypczak
Publisher: Springer
ISBN: 3662529475
Category : Mathematics
Languages : en
Pages : 212
Book Description
The book is based on the PhD thesis “Descriptive Set Theoretic Methods in Automata Theory,” awarded the E.W. Beth Prize in 2015 for outstanding dissertations in the fields of logic, language, and information. The thesis reveals unexpected connections between advanced concepts in logic, descriptive set theory, topology, and automata theory and provides many deep insights into the interplay between these fields. It opens new perspectives on central problems in the theory of automata on infinite words and trees and offers very impressive advances in this theory from the point of view of topology. "...the thesis of Michał Skrzypczak offers certainly what we expect from excellent mathematics: new unexpected connections between a priori distinct concepts, and proofs involving enlightening ideas.” Thomas Colcombet.
Publisher: Springer
ISBN: 3662529475
Category : Mathematics
Languages : en
Pages : 212
Book Description
The book is based on the PhD thesis “Descriptive Set Theoretic Methods in Automata Theory,” awarded the E.W. Beth Prize in 2015 for outstanding dissertations in the fields of logic, language, and information. The thesis reveals unexpected connections between advanced concepts in logic, descriptive set theory, topology, and automata theory and provides many deep insights into the interplay between these fields. It opens new perspectives on central problems in the theory of automata on infinite words and trees and offers very impressive advances in this theory from the point of view of topology. "...the thesis of Michał Skrzypczak offers certainly what we expect from excellent mathematics: new unexpected connections between a priori distinct concepts, and proofs involving enlightening ideas.” Thomas Colcombet.
Generalized Descriptive Set Theory and Classification Theory
Author: Sy-David Friedman
Publisher: American Mathematical Soc.
ISBN: 0821894757
Category : Mathematics
Languages : en
Pages : 92
Book Description
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Publisher: American Mathematical Soc.
ISBN: 0821894757
Category : Mathematics
Languages : en
Pages : 92
Book Description
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Descriptive Set Theory and Forcing
Author: Arnold W. Miller
Publisher: Cambridge University Press
ISBN: 1316739317
Category : Mathematics
Languages : en
Pages : 136
Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.
Publisher: Cambridge University Press
ISBN: 1316739317
Category : Mathematics
Languages : en
Pages : 136
Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.
Lectures on Infinitary Model Theory
Author: David Marker
Publisher: Cambridge University Press
ISBN: 1107181933
Category : Mathematics
Languages : en
Pages : 192
Book Description
This book is the first modern introduction to the logic of infinitary languages in forty years, and is aimed at graduate students and researchers in all areas of mathematical logic. Connections between infinitary model theory and other branches of mathematical logic, and applications to algebra and algebraic geometry are both comprehensively explored.
Publisher: Cambridge University Press
ISBN: 1107181933
Category : Mathematics
Languages : en
Pages : 192
Book Description
This book is the first modern introduction to the logic of infinitary languages in forty years, and is aimed at graduate students and researchers in all areas of mathematical logic. Connections between infinitary model theory and other branches of mathematical logic, and applications to algebra and algebraic geometry are both comprehensively explored.
Algebraic Computability and Enumeration Models
Author: Cyrus F. Nourani
Publisher: CRC Press
ISBN: 1771882484
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples
Publisher: CRC Press
ISBN: 1771882484
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples
The Higher Infinite
Author: Akihiro Kanamori
Publisher: Springer Science & Business Media
ISBN: 3540888675
Category : Mathematics
Languages : en
Pages : 555
Book Description
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Publisher: Springer Science & Business Media
ISBN: 3540888675
Category : Mathematics
Languages : en
Pages : 555
Book Description
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Higher Set Theory
Author: G.H. Müller
Publisher: Springer
ISBN: 3540357491
Category : Mathematics
Languages : en
Pages : 481
Book Description
Publisher: Springer
ISBN: 3540357491
Category : Mathematics
Languages : en
Pages : 481
Book Description