Inertial MEMS

Inertial MEMS PDF Author: Volker Kempe
Publisher: Cambridge University Press
ISBN: 1139494821
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.

Inertial MEMS

Inertial MEMS PDF Author: Volker Kempe
Publisher: Cambridge University Press
ISBN: 1139494821
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.

MEMS-based Integrated Navigation

MEMS-based Integrated Navigation PDF Author: Priyanka Aggarwal
Publisher: Artech House
ISBN: 1608070441
Category : Technology & Engineering
Languages : en
Pages : 213

Get Book Here

Book Description
Due to their micro-scale size and low power consumption, Microelectromechanical systems (MEMS) are now being utilized in a variety of fields. This leading-edge resource focuses on the application of MEMS inertial sensors to navigation systems. The book shows you how to minimize cost by adding and removing inertial sensors. Moreover, this practical reference provides you with various integration strategies with examples from real field tests. From an introduction to MEMS navigation related applicationsOC to special topics on Alignment for MEMS-Based NavigationOC to discussions on the Extended Kalman Filter, this comprehensive book covers a wide range of critical topics in this fast-growing area."

Mems for Automotive and Aerospace Applications

Mems for Automotive and Aerospace Applications PDF Author: Michael Kraft
Publisher: Elsevier
ISBN: 0857096486
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for aerospace applications, including devices for active drag reduction in aerospace applications, inertial navigation and structural health monitoring systems, and thrusters for nano- and pico-satellites. A selection of case studies are used to explore MEMS for harsh environment sensors in aerospace applications, before the book concludes by considering the use of MEMS in space exploration and exploitation.With its distinguished editors and international team of expert contributors, MEMS for automotive and aerospace applications is a key tool for MEMS manufacturers and all scientists, engineers and academics working on MEMS and intelligent systems for transportation. - Chapters consider the role of MEMS in a number of automotive applications, including passenger safety and comfort, vehicle stability and control - MEMS for aerospace applications are also discussed, including active drag reduction, inertial navigation and structural health monitoring systems - Presents a number of case studies exploring MEMS for harsh environment sensors in aerospace

MEMS Accelerometers

MEMS Accelerometers PDF Author: Mahmoud Rasras
Publisher: MDPI
ISBN: 3038974145
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book Here

Book Description
Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

System-level Modeling of MEMS

System-level Modeling of MEMS PDF Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 3527647120
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.

Resonant MEMS

Resonant MEMS PDF Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 3527335455
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

Strapdown Inertial Navigation Technology

Strapdown Inertial Navigation Technology PDF Author: David Titterton
Publisher: IET
ISBN: 0863413587
Category : Technology & Engineering
Languages : en
Pages : 578

Get Book Here

Book Description
Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book discusses the physical principles of inertial navigation, the associated growth of errors and their compensation. It draws current technological developments, provides an indication of potential future trends and covers a broad range of applications. New chapters on MEMS (microelectromechanical systems) technology and inertial system applications are included.

MEMS/NEMS Sensors

MEMS/NEMS Sensors PDF Author: Goutam Koley
Publisher: MDPI
ISBN: 3039216341
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
Due to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors.

Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies PDF Author: Markku Tilli
Publisher: Elsevier
ISBN: 0815519885
Category : Technology & Engineering
Languages : en
Pages : 670

Get Book Here

Book Description
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures

MEMS Sensors and Resonators

MEMS Sensors and Resonators PDF Author: Frederic Nabki
Publisher: MDPI
ISBN: 3039288652
Category : Technology & Engineering
Languages : en
Pages : 164

Get Book Here

Book Description
Microelectromechanical systems (MEMS) have had a profound impact on a wide range of applications. The degree of miniaturization made possible by MEMS technology has significantly improved the functionalities of many systems, and the performance of MEMS has steadily improved as its uses augment. Notably, MEMS sensors have been prevalent in motion sensing applications for decades, and the sensing mechanisms leveraged by MEMS have been continuously extended to applications spanning the detection of gases, magnetic fields, electromagnetic radiation, and more. In parallel, MEMS resonators have become an emerging field of MEMS and affected subfields such as electronic timing and filtering, and energy harvesting. They have, in addition, enabled a wide range of resonant sensors. For many years now, MEMS have been the basis of various industrial successes, often building on novel academic research. Accordingly, this Special Issue explores many research innovations in MEMS sensors and resonators, from biomedical applications to energy harvesting, gas sensing, resonant sensing, and timing.