Inequalities and Applications

Inequalities and Applications PDF Author: Catherine Bandle
Publisher: Springer Science & Business Media
ISBN: 3764387734
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
Inequalities continue to play an essential role in mathematics. Perhaps, they form the last field comprehended and used by mathematicians in all areas of the discipline. Since the seminal work Inequalities (1934) by Hardy, Littlewood and Pólya, mathematicians have laboured to extend and sharpen their classical inequalities. New inequalities are discovered every year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. The study of inequalities reflects the many and various aspects of mathematics. On one hand, there is the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand, the subject is the source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are numerous applications in a wide variety of fields, from mathematical physics to biology and economics. This volume contains the contributions of the participants of the Conference on Inequalities and Applications held in Noszvaj (Hungary) in September 2007. It is conceived in the spirit of the preceding volumes of the General Inequalities meetings held in Oberwolfach from 1976 to 1995 in the sense that it not only contains the latest results presented by the participants, but it is also a useful reference book for both lecturers and research workers. The contributions reflect the ramification of general inequalities into many areas of mathematics and also present a synthesis of results in both theory and practice.

Inequalities and Applications

Inequalities and Applications PDF Author: Catherine Bandle
Publisher: Springer Science & Business Media
ISBN: 3764387734
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
Inequalities continue to play an essential role in mathematics. Perhaps, they form the last field comprehended and used by mathematicians in all areas of the discipline. Since the seminal work Inequalities (1934) by Hardy, Littlewood and Pólya, mathematicians have laboured to extend and sharpen their classical inequalities. New inequalities are discovered every year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. The study of inequalities reflects the many and various aspects of mathematics. On one hand, there is the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand, the subject is the source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are numerous applications in a wide variety of fields, from mathematical physics to biology and economics. This volume contains the contributions of the participants of the Conference on Inequalities and Applications held in Noszvaj (Hungary) in September 2007. It is conceived in the spirit of the preceding volumes of the General Inequalities meetings held in Oberwolfach from 1976 to 1995 in the sense that it not only contains the latest results presented by the participants, but it is also a useful reference book for both lecturers and research workers. The contributions reflect the ramification of general inequalities into many areas of mathematics and also present a synthesis of results in both theory and practice.

Integral Inequalities and Applications

Integral Inequalities and Applications PDF Author: D.D. Bainov
Publisher: Springer Science & Business Media
ISBN: 9401580340
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This volume is devoted to integral inequalities of the Gronwall-Bellman-Bihari type. Following a systematic exposition of linear and nonlinear inequalities, attention is paid to analogues including integro-differential inequalities, functional differential inequalities, and discrete and abstract analogues. Applications to the investigation of the properties of solutions of various classes of equations such as uniqueness, stability, dichotomy, asymptotic equivalence and behaviour is also discussed. The book comprises three chapters. Chapter I and II consider classical linear and nonlinear integral inequalities. Chapter III is devoted to various classes of integral inequalities of Gronwall type, and their analogues, which find applications in the theory of integro-differential equations, partial differential equations, differential equations with deviating argument, impube differential equations, etc. Each chapter concludes with a section illustrating the manner of application. The book also contains an extensive bibliography. For researchers whose work involves the theory and application of integral inequalities in mathematics, engineering and physics.

Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications PDF Author: Themistocles RASSIAS
Publisher: Springer Science & Business Media
ISBN: 940170225X
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.

Differential and Integral Inequalities

Differential and Integral Inequalities PDF Author: Dorin Andrica
Publisher: Springer Nature
ISBN: 3030274071
Category : Mathematics
Languages : en
Pages : 848

Get Book Here

Book Description
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.

Advances in Mathematical Inequalities and Applications

Advances in Mathematical Inequalities and Applications PDF Author: Praveen Agarwal
Publisher: Springer
ISBN: 9811330131
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.

Functional Equations and Inequalities with Applications

Functional Equations and Inequalities with Applications PDF Author: Palaniappan Kannappan
Publisher: Springer Science & Business Media
ISBN: 0387894926
Category : Mathematics
Languages : en
Pages : 817

Get Book Here

Book Description
Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.

Opial Inequalities with Applications in Differential and Difference Equations

Opial Inequalities with Applications in Differential and Difference Equations PDF Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401584265
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
In 1960 the Polish mathematician Zdzidlaw Opial (1930--1974) published an inequality involving integrals of a function and its derivative. This volume offers a systematic and up-to-date account of developments in Opial-type inequalities. The book presents a complete survey of results in the field, starting with Opial's landmark paper, traversing through its generalizations, extensions and discretizations. Some of the important applications of these inequalities in the theory of differential and difference equations, such as uniqueness of solutions of boundary value problems, and upper bounds of solutions are also presented. This book is suitable for graduate students and researchers in mathematical analysis and applications.

Lyapunov Inequalities and Applications

Lyapunov Inequalities and Applications PDF Author: Ravi P. Agarwal
Publisher: Springer Nature
ISBN: 3030690296
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address. This survey starts by introducing basic applications of Lyapunov’s inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities; partial differential equations; linear difference equations; and Lyapunov-type inequalities for linear, half-linear, and nonlinear dynamic equations on time scales, as well as linear Hamiltonian dynamic systems. Senior undergraduate students and graduate students of mathematics, engineering, and science will benefit most from this book, as well as researchers in the areas of ordinary differential equations, partial differential equations, difference equations, and dynamic equations. Some background in calculus, ordinary and partial differential equations, and difference equations is recommended for full enjoyment of the content.

Ostrowski Type Inequalities and Applications in Numerical Integration

Ostrowski Type Inequalities and Applications in Numerical Integration PDF Author: Sever S. Dragomir
Publisher: Springer Science & Business Media
ISBN: 9401725195
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives", Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given.

Difference Equations and Inequalities

Difference Equations and Inequalities PDF Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 9781420027020
Category : Mathematics
Languages : en
Pages : 1010

Get Book Here

Book Description
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and