Author: Leo Zawadowski
Publisher:
ISBN: 9783111747484
Category : Grammar, Comparative and general
Languages : en
Pages : 316
Book Description
Inductive Semantics and Syntax
Author: Leo Zawadowski
Publisher:
ISBN: 9783111747484
Category : Grammar, Comparative and general
Languages : en
Pages : 316
Book Description
Publisher:
ISBN: 9783111747484
Category : Grammar, Comparative and general
Languages : en
Pages : 316
Book Description
The Formal Semantics of Programming Languages
Author: Glynn Winskel
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Concrete Semantics
Author: Tobias Nipkow
Publisher: Springer
ISBN: 3319105426
Category : Computers
Languages : en
Pages : 304
Book Description
Part I of this book is a practical introduction to working with the Isabelle proof assistant. It teaches you how to write functional programs and inductive definitions and how to prove properties about them in Isabelle’s structured proof language. Part II is an introduction to the semantics of imperative languages with an emphasis on applications like compilers and program analysers. The distinguishing feature is that all the mathematics has been formalised in Isabelle and much of it is executable. Part I focusses on the details of proofs in Isabelle; Part II can be read even without familiarity with Isabelle’s proof language, all proofs are described in detail but informally. The book teaches the reader the art of precise logical reasoning and the practical use of a proof assistant as a surgical tool for formal proofs about computer science artefacts. In this sense it represents a formal approach to computer science, not just semantics. The Isabelle formalisation, including the proofs and accompanying slides, are freely available online, and the book is suitable for graduate students, advanced undergraduate students, and researchers in theoretical computer science and logic.
Publisher: Springer
ISBN: 3319105426
Category : Computers
Languages : en
Pages : 304
Book Description
Part I of this book is a practical introduction to working with the Isabelle proof assistant. It teaches you how to write functional programs and inductive definitions and how to prove properties about them in Isabelle’s structured proof language. Part II is an introduction to the semantics of imperative languages with an emphasis on applications like compilers and program analysers. The distinguishing feature is that all the mathematics has been formalised in Isabelle and much of it is executable. Part I focusses on the details of proofs in Isabelle; Part II can be read even without familiarity with Isabelle’s proof language, all proofs are described in detail but informally. The book teaches the reader the art of precise logical reasoning and the practical use of a proof assistant as a surgical tool for formal proofs about computer science artefacts. In this sense it represents a formal approach to computer science, not just semantics. The Isabelle formalisation, including the proofs and accompanying slides, are freely available online, and the book is suitable for graduate students, advanced undergraduate students, and researchers in theoretical computer science and logic.
Inductive Semantics and Syntax
Author: Leon Zawadowski
Publisher: Hague : Mouton
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 324
Book Description
No detailed description available for "Inductive Semantics and Syntax".
Publisher: Hague : Mouton
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 324
Book Description
No detailed description available for "Inductive Semantics and Syntax".
Syntactic Structures
Author: Noam Chomsky
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112316002
Category : Language Arts & Disciplines
Languages : en
Pages : 120
Book Description
No detailed description available for "Syntactic Structures".
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112316002
Category : Language Arts & Disciplines
Languages : en
Pages : 120
Book Description
No detailed description available for "Syntactic Structures".
Certified Programming with Dependent Types
Author: Adam Chlipala
Publisher: MIT Press
ISBN: 0262545748
Category : Computers
Languages : en
Pages : 437
Book Description
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
Publisher: MIT Press
ISBN: 0262545748
Category : Computers
Languages : en
Pages : 437
Book Description
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
Semantics of Programming Languages
Author: Carl A. Gunter
Publisher: MIT Press
ISBN: 9780262570954
Category : Computers
Languages : en
Pages : 450
Book Description
Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi. Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.
Publisher: MIT Press
ISBN: 9780262570954
Category : Computers
Languages : en
Pages : 450
Book Description
Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi. Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.
The Semantics of Programming Languages
Author: Matthew Hennessy
Publisher:
ISBN: 9780783763811
Category : Computer systems
Languages : en
Pages : 157
Book Description
Publisher:
ISBN: 9780783763811
Category : Computer systems
Languages : en
Pages : 157
Book Description
Algol-like Languages
Author: Peter O'Hearn
Publisher: Springer Science & Business Media
ISBN: 147573851X
Category : Computers
Languages : en
Pages : 345
Book Description
To construct a compiler for a modern higher-level programming languagel one needs to structure the translation to a machine-like intermediate language in a way that reflects the semantics of the language. little is said about such struc turing in compiler texts that are intended to cover a wide variety of program ming languages. More is said in the Iiterature on semantics-directed compiler construction [1] but here too the viewpoint is very general (though limited to 1 languages with a finite number of syntactic types). On the other handl there is a considerable body of work using the continuation-passing transformation to structure compilers for the specific case of call-by-value languages such as SCHEME and ML [21 3]. ln this paperl we will describe a method of structuring the translation of ALGOL-like languages that is based on the functor-category semantics devel oped by Reynolds [4] and Oles [51 6]. An alternative approach using category theory to structure compilers is the early work of F. L. Morris [7]1 which anticipates our treatment of boolean expressionsl but does not deal with procedures. 2 Types and Syntax An ALGOL-like language is a typed lambda calculus with an unusual repertoire of primitive types. Throughout most of this paper we assume that the primi tive types are comm(and) int(eger)exp(ression) int(eger)acc(eptor) int(eger)var(iable) I and that the set 8 of types is the least set containing these primitive types and closed under the binary operation -.
Publisher: Springer Science & Business Media
ISBN: 147573851X
Category : Computers
Languages : en
Pages : 345
Book Description
To construct a compiler for a modern higher-level programming languagel one needs to structure the translation to a machine-like intermediate language in a way that reflects the semantics of the language. little is said about such struc turing in compiler texts that are intended to cover a wide variety of program ming languages. More is said in the Iiterature on semantics-directed compiler construction [1] but here too the viewpoint is very general (though limited to 1 languages with a finite number of syntactic types). On the other handl there is a considerable body of work using the continuation-passing transformation to structure compilers for the specific case of call-by-value languages such as SCHEME and ML [21 3]. ln this paperl we will describe a method of structuring the translation of ALGOL-like languages that is based on the functor-category semantics devel oped by Reynolds [4] and Oles [51 6]. An alternative approach using category theory to structure compilers is the early work of F. L. Morris [7]1 which anticipates our treatment of boolean expressionsl but does not deal with procedures. 2 Types and Syntax An ALGOL-like language is a typed lambda calculus with an unusual repertoire of primitive types. Throughout most of this paper we assume that the primi tive types are comm(and) int(eger)exp(ression) int(eger)acc(eptor) int(eger)var(iable) I and that the set 8 of types is the least set containing these primitive types and closed under the binary operation -.
Inductive Logic Programming
Author: Stan Matwin
Publisher: Springer Science & Business Media
ISBN: 3540005676
Category : Computers
Languages : en
Pages : 361
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 12th International Conference on Inductive Logic Programming, ILP 2002, held in Sydney, Australia in July 2002. The 22 revised full papers presented were carefully selected during two rounds of reviewing and revision from 45 submissions. Among the topics addressed are first order decision lists, learning with description logics, bagging in ILP, kernel methods, concept learning, relational learners, description logic programs, Bayesian classifiers, knowledge discovery, data mining, logical sequences, theory learning, stochastic logic programs, machine discovery, and relational pattern discovery.
Publisher: Springer Science & Business Media
ISBN: 3540005676
Category : Computers
Languages : en
Pages : 361
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 12th International Conference on Inductive Logic Programming, ILP 2002, held in Sydney, Australia in July 2002. The 22 revised full papers presented were carefully selected during two rounds of reviewing and revision from 45 submissions. Among the topics addressed are first order decision lists, learning with description logics, bagging in ILP, kernel methods, concept learning, relational learners, description logic programs, Bayesian classifiers, knowledge discovery, data mining, logical sequences, theory learning, stochastic logic programs, machine discovery, and relational pattern discovery.