Author: Pascal Yvon
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Structural Materials for Generation IV Nuclear Reactors
Author: Pascal Yvon
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1070
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1070
Book Description
Characterization and Testing of Materials for Nuclear Reactors
Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 158
Book Description
Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 158
Book Description
Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.
Nuclear Regulatory Commission Issuances
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 950
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 950
Book Description
Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water
Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 236
Book Description
This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report, together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 236
Book Description
This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report, together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage.
Physical Metallurgy of Reactor Fuel Elements
Author: John Edwin Harris
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Comprehensive Nuclear Materials
Author: Todd R Allen
Publisher: Elsevier
ISBN: 0080560334
Category : Technology & Engineering
Languages : en
Pages : 3552
Book Description
Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants
Publisher: Elsevier
ISBN: 0080560334
Category : Technology & Engineering
Languages : en
Pages : 3552
Book Description
Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants
Oversight Hearings on Nuclear Energy: Subtitle:Nuclear Breeder Development Program
Author: United States. Congress. House. Committee on Interior and Insular Affairs. Subcommittee on Energy and the Environment
Publisher:
ISBN:
Category : Nuclear power plants
Languages : en
Pages : 788
Book Description
Publisher:
ISBN:
Category : Nuclear power plants
Languages : en
Pages : 788
Book Description
Comprehensive Nuclear Materials
Author:
Publisher: Elsevier
ISBN: 0081028660
Category : Science
Languages : en
Pages : 4871
Book Description
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field
Publisher: Elsevier
ISBN: 0081028660
Category : Science
Languages : en
Pages : 4871
Book Description
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description