Improving Bayesian Reasoning: What Works and Why?

Improving Bayesian Reasoning: What Works and Why? PDF Author: Gorka Navarrete
Publisher: Frontiers Media SA
ISBN: 288919745X
Category : Psychology
Languages : en
Pages : 209

Get Book Here

Book Description
We confess that the first part of our title is somewhat of a misnomer. Bayesian reasoning is a normative approach to probabilistic belief revision and, as such, it is in need of no improvement. Rather, it is the typical individual whose reasoning and judgments often fall short of the Bayesian ideal who is the focus of improvement. What have we learnt from over a half-century of research and theory on this topic that could explain why people are often non-Bayesian? Can Bayesian reasoning be facilitated, and if so why? These are the questions that motivate this Frontiers in Psychology Research Topic. Bayes' theorem, named after English statistician, philosopher, and Presbyterian minister, Thomas Bayes, offers a method for updating one’s prior probability of an hypothesis H on the basis of new data D such that P(H|D) = P(D|H)P(H)/P(D). The first wave of psychological research, pioneered by Ward Edwards, revealed that people were overly conservative in updating their posterior probabilities (i.e., P(D|H)). A second wave, spearheaded by Daniel Kahneman and Amos Tversky, showed that people often ignored prior probabilities or base rates, where the priors had a frequentist interpretation, and hence were not Bayesians at all. In the 1990s, a third wave of research spurred by Leda Cosmides and John Tooby and by Gerd Gigerenzer and Ulrich Hoffrage showed that people can reason more like a Bayesian if only the information provided takes the form of (non-relativized) natural frequencies. Although Kahneman and Tversky had already noted the advantages of frequency representations, it was the third wave scholars who pushed the prescriptive agenda, arguing that there are feasible and effective methods for improving belief revision. Most scholars now agree that natural frequency representations do facilitate Bayesian reasoning. However, they do not agree on why this is so. The original third wave scholars favor an evolutionary account that posits human brain adaptation to natural frequency processing. But almost as soon as this view was proposed, other scholars challenged it, arguing that such evolutionary assumptions were not needed. The dominant opposing view has been that the benefit of natural frequencies is mainly due to the fact that such representations make the nested set relations perfectly transparent. Thus, people can more easily see what information they need to focus on and how to simply combine it. This Research Topic aims to take stock of where we are at present. Are we in a proto-fourth wave? If so, does it offer a synthesis of recent theoretical disagreements? The second part of the title orients the reader to the two main subtopics: what works and why? In terms of the first subtopic, we seek contributions that advance understanding of how to improve people’s abilities to revise their beliefs and to integrate probabilistic information effectively. The second subtopic centers on explaining why methods that improve non-Bayesian reasoning work as well as they do. In addressing that issue, we welcome both critical analyses of existing theories as well as fresh perspectives. For both subtopics, we welcome the full range of manuscript types.

Improving Bayesian Reasoning: What Works and Why?

Improving Bayesian Reasoning: What Works and Why? PDF Author: Gorka Navarrete
Publisher: Frontiers Media SA
ISBN: 288919745X
Category : Psychology
Languages : en
Pages : 209

Get Book Here

Book Description
We confess that the first part of our title is somewhat of a misnomer. Bayesian reasoning is a normative approach to probabilistic belief revision and, as such, it is in need of no improvement. Rather, it is the typical individual whose reasoning and judgments often fall short of the Bayesian ideal who is the focus of improvement. What have we learnt from over a half-century of research and theory on this topic that could explain why people are often non-Bayesian? Can Bayesian reasoning be facilitated, and if so why? These are the questions that motivate this Frontiers in Psychology Research Topic. Bayes' theorem, named after English statistician, philosopher, and Presbyterian minister, Thomas Bayes, offers a method for updating one’s prior probability of an hypothesis H on the basis of new data D such that P(H|D) = P(D|H)P(H)/P(D). The first wave of psychological research, pioneered by Ward Edwards, revealed that people were overly conservative in updating their posterior probabilities (i.e., P(D|H)). A second wave, spearheaded by Daniel Kahneman and Amos Tversky, showed that people often ignored prior probabilities or base rates, where the priors had a frequentist interpretation, and hence were not Bayesians at all. In the 1990s, a third wave of research spurred by Leda Cosmides and John Tooby and by Gerd Gigerenzer and Ulrich Hoffrage showed that people can reason more like a Bayesian if only the information provided takes the form of (non-relativized) natural frequencies. Although Kahneman and Tversky had already noted the advantages of frequency representations, it was the third wave scholars who pushed the prescriptive agenda, arguing that there are feasible and effective methods for improving belief revision. Most scholars now agree that natural frequency representations do facilitate Bayesian reasoning. However, they do not agree on why this is so. The original third wave scholars favor an evolutionary account that posits human brain adaptation to natural frequency processing. But almost as soon as this view was proposed, other scholars challenged it, arguing that such evolutionary assumptions were not needed. The dominant opposing view has been that the benefit of natural frequencies is mainly due to the fact that such representations make the nested set relations perfectly transparent. Thus, people can more easily see what information they need to focus on and how to simply combine it. This Research Topic aims to take stock of where we are at present. Are we in a proto-fourth wave? If so, does it offer a synthesis of recent theoretical disagreements? The second part of the title orients the reader to the two main subtopics: what works and why? In terms of the first subtopic, we seek contributions that advance understanding of how to improve people’s abilities to revise their beliefs and to integrate probabilistic information effectively. The second subtopic centers on explaining why methods that improve non-Bayesian reasoning work as well as they do. In addressing that issue, we welcome both critical analyses of existing theories as well as fresh perspectives. For both subtopics, we welcome the full range of manuscript types.

Why Do Frequency Formats Improve Bayesian Reasoning?

Why Do Frequency Formats Improve Bayesian Reasoning? PDF Author: Gerd Gigerenzer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning PDF Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521518148
Category : Computers
Languages : en
Pages : 739

Get Book Here

Book Description
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Social Inquiry and Bayesian Inference

Social Inquiry and Bayesian Inference PDF Author: Tasha Fairfield
Publisher: Cambridge University Press
ISBN: 1108421644
Category : Political Science
Languages : en
Pages : 683

Get Book Here

Book Description
Provides guidance for Bayesian updating in case study, process-tracing, and comparative research, in order to refine intuition and improve inferences from qualitative evidence.

How to Improve Bayesian Reasoning Without Instruction

How to Improve Bayesian Reasoning Without Instruction PDF Author: Gerd Gigerenzer
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Get Book Here

Book Description


Improving Statistical Reasoning

Improving Statistical Reasoning PDF Author: Peter Sedlmeier
Publisher: Psychology Press
ISBN: 1135705755
Category : Psychology
Languages : en
Pages : 287

Get Book Here

Book Description
This book focuses on how statistical reasoning works and on training programs that can exploit people's natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.

Modeling and Reasoning with Bayesian Networks

Modeling and Reasoning with Bayesian Networks PDF Author: Adnan Darwiche
Publisher: Cambridge University Press
ISBN: 0521884381
Category : Computers
Languages : en
Pages : 561

Get Book Here

Book Description
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Bayesian Rationality

Bayesian Rationality PDF Author: Mike Oaksford
Publisher: Oxford University Press
ISBN: 0198524498
Category : Philosophy
Languages : en
Pages : 342

Get Book Here

Book Description
For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.

Psychology and Mathematics Education

Psychology and Mathematics Education PDF Author: Gila Hanna
Publisher: Frontiers Media SA
ISBN: 2832529992
Category : Science
Languages : en
Pages : 552

Get Book Here

Book Description
Modern Mathematics is constructed rigorously through proofs, based on truths, which are either axioms or previously proven theorems. Thus, it is par excellence a model of rational inquiry. Links between Cognitive Psychology and Mathematics Education have been particularly strong during the last decades. Indeed, the Enlightenment view of the rational human mind that reasons, makes decisions and solves problems based on logic and probabilities, was shaken during the second half of the twentieth century. Cognitive psychologists discovered that humans' thoughts and actions often deviate from rules imposed by strict normative theories of inference. Yet, these deviations should not be called "errors": as Cognitive Psychologists have demonstrated, these deviations may be either valid heuristics that succeed in the environments in which humans have evolved, or biases that are caused by a lack of adaptation to abstract information formats. Humans, as the cognitive psychologist and economist Herbert Simon claimed, do not usually optimize, but rather satisfice, even when solving problem. This Research Topic aims at demonstrating that these insights have had a decisive impact on Mathematics Education. We want to stress that we are concerned with the view of bounded rationality that is different from the one espoused by the heuristics-and-biases program. In Simon’s bounded rationality and its direct descendant ecological rationality, rationality is understood in terms of cognitive success in the world (correspondence) rather than in terms of conformity to content-free norms of coherence (e.g., transitivity).

Interactive Visualizations to Improve Bayesian Reasoning

Interactive Visualizations to Improve Bayesian Reasoning PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description