Author: Kiyohiro Ikeda
Publisher: Springer Science & Business Media
ISBN: 1475736975
Category : Science
Languages : en
Pages : 426
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Imperfect Bifurcation in Structures and Materials
Author: Kiyohiro Ikeda
Publisher: Springer Science & Business Media
ISBN: 1475736975
Category : Science
Languages : en
Pages : 426
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Publisher: Springer Science & Business Media
ISBN: 1475736975
Category : Science
Languages : en
Pages : 426
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Imperfect Bifurcation in Structures and Materials
Author: Kiyohiro Ikeda
Publisher: Springer Nature
ISBN: 3030214737
Category : Science
Languages : en
Pages : 607
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Publisher: Springer Nature
ISBN: 3030214737
Category : Science
Languages : en
Pages : 607
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Bifurcation and Buckling in Structures
Author: Kiyohiro Ikeda
Publisher: CRC Press
ISBN: 1000508579
Category : Mathematics
Languages : en
Pages : 278
Book Description
Bifurcation and Buckling in Structures describes the theory and analysis of bifurcation and buckling in structures. Emphasis is placed on a general procedure for solving nonlinear governing equations and an analysis procedure related to the finite-element method. Simple structural examples using trusses, columns, and frames illustrate the principles. Part I presents fundamental issues such as the general mathematical framework for bifurcation and buckling, procedures for the buckling load/mode analyses, and numerical analysis procedures to trace the solution curves and switch to bifurcation solutions. Advanced topics include asymptotic theory of bifurcation and bifurcation theory of symmetric systems. Part II deals with buckling of perfect and imperfect structures. An overview of the member buckling of columns and beams is provided, followed by the buckling analysis of truss and frame structures. The worst and random imperfections are studied as advanced topics. An extensive review of the history of buckling is presented. This text is ideal for advanced undergraduate and graduate students in engineering and applied mathematics. To assist readers, problems are listed at the end of each chapter, and their answers are given at the end of the book. Kiyohiro Ikeda is Professor Emeritus at Tohoku University, Japan. Kazuo Murota is a Project Professor at the Institute of Statistical Mathematics, Japan, as well as Professor Emeritus at the University of Tokyo, Kyoto University, and Tokyo Metropolitan University, Japan.
Publisher: CRC Press
ISBN: 1000508579
Category : Mathematics
Languages : en
Pages : 278
Book Description
Bifurcation and Buckling in Structures describes the theory and analysis of bifurcation and buckling in structures. Emphasis is placed on a general procedure for solving nonlinear governing equations and an analysis procedure related to the finite-element method. Simple structural examples using trusses, columns, and frames illustrate the principles. Part I presents fundamental issues such as the general mathematical framework for bifurcation and buckling, procedures for the buckling load/mode analyses, and numerical analysis procedures to trace the solution curves and switch to bifurcation solutions. Advanced topics include asymptotic theory of bifurcation and bifurcation theory of symmetric systems. Part II deals with buckling of perfect and imperfect structures. An overview of the member buckling of columns and beams is provided, followed by the buckling analysis of truss and frame structures. The worst and random imperfections are studied as advanced topics. An extensive review of the history of buckling is presented. This text is ideal for advanced undergraduate and graduate students in engineering and applied mathematics. To assist readers, problems are listed at the end of each chapter, and their answers are given at the end of the book. Kiyohiro Ikeda is Professor Emeritus at Tohoku University, Japan. Kazuo Murota is a Project Professor at the Institute of Statistical Mathematics, Japan, as well as Professor Emeritus at the University of Tokyo, Kyoto University, and Tokyo Metropolitan University, Japan.
Stability and Optimization of Structures
Author: Makoto Ohsaki
Publisher: Springer Science & Business Media
ISBN: 0387681841
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
This book focuses on the optimization of a geometrically-nonlinear structure under stability constraint. It presents a deep insight into optimization-based and computer-assisted stability design of discrete structures. Coverage combines design sensitivity analysis developed in structural optimization and imperfection-sensitivity analysis developed in stability analysis.
Publisher: Springer Science & Business Media
ISBN: 0387681841
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
This book focuses on the optimization of a geometrically-nonlinear structure under stability constraint. It presents a deep insight into optimization-based and computer-assisted stability design of discrete structures. Coverage combines design sensitivity analysis developed in structural optimization and imperfection-sensitivity analysis developed in stability analysis.
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
Author: Mariana Haragus
Publisher: Springer Science & Business Media
ISBN: 0857291122
Category : Mathematics
Languages : en
Pages : 338
Book Description
An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Publisher: Springer Science & Business Media
ISBN: 0857291122
Category : Mathematics
Languages : en
Pages : 338
Book Description
An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Bifurcation Theory for Hexagonal Agglomeration in Economic Geography
Author: Kiyohiro Ikeda
Publisher: Springer Science & Business Media
ISBN: 4431542582
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
Publisher: Springer Science & Business Media
ISBN: 4431542582
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
Direct Methods in the Calculus of Variations
Author: Bernard Dacorogna
Publisher: Springer Science & Business Media
ISBN: 0387552499
Category : Mathematics
Languages : en
Pages : 616
Book Description
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
Publisher: Springer Science & Business Media
ISBN: 0387552499
Category : Mathematics
Languages : en
Pages : 616
Book Description
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
ICGG 2024 - Proceedings of the 21st International Conference on Geometry and Graphics
Author: Kazuki Takenouchi
Publisher: Springer Nature
ISBN: 3031710088
Category :
Languages : en
Pages : 461
Book Description
Publisher: Springer Nature
ISBN: 3031710088
Category :
Languages : en
Pages : 461
Book Description
Resolution Of The Twentieth Century Conundrum In Elastic Stability
Author: Isaac E Elishakoff
Publisher: World Scientific
ISBN: 9814583553
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
There have been stability theories developed for beams, plates and shells — the most significant elements in mechanical, aerospace, ocean and marine engineering. For beams and plates, the theoretical and experimental values of buckling loads are in close vicinity. However for thin shells, the experimental predictions do not conform with the theory, due to presence of small geometric imperfections that are deviations from the ideal shape.This fact has been referred to in the literature as ‘embarrassing’, ‘paradoxical’ and ‘perplexing’. Indeed, the popular adage, “In theory there is no difference between theory and practice. In practice there is”, very much applies to thin shells whose experimental buckling loads may constitute a small fraction of the theoretical prediction based on classical linear theory; because in practice, engineers use knockdown factors that are not theoretically substantiated.This book presents a uniform approach that tames this prima-donna-like and capricious behavior of structures that has been dubbed the ‘imperfection sensitivity’ — thus resolving the conundrum that has occupied the best minds of elastic stability throughout the twentieth century.
Publisher: World Scientific
ISBN: 9814583553
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
There have been stability theories developed for beams, plates and shells — the most significant elements in mechanical, aerospace, ocean and marine engineering. For beams and plates, the theoretical and experimental values of buckling loads are in close vicinity. However for thin shells, the experimental predictions do not conform with the theory, due to presence of small geometric imperfections that are deviations from the ideal shape.This fact has been referred to in the literature as ‘embarrassing’, ‘paradoxical’ and ‘perplexing’. Indeed, the popular adage, “In theory there is no difference between theory and practice. In practice there is”, very much applies to thin shells whose experimental buckling loads may constitute a small fraction of the theoretical prediction based on classical linear theory; because in practice, engineers use knockdown factors that are not theoretically substantiated.This book presents a uniform approach that tames this prima-donna-like and capricious behavior of structures that has been dubbed the ‘imperfection sensitivity’ — thus resolving the conundrum that has occupied the best minds of elastic stability throughout the twentieth century.
Imperfect Bifurcation in Structures and Materials
Author: Kiyohiro Ikeda
Publisher:
ISBN: 9781475736984
Category :
Languages : en
Pages : 436
Book Description
Publisher:
ISBN: 9781475736984
Category :
Languages : en
Pages : 436
Book Description