Author: Yushan Liu
Publisher: John Wiley & Sons
ISBN: 1119037077
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications. Provides an overview of existing challenges, solutions and future trends. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.
Impedance Source Power Electronic Converters
Author: Yushan Liu
Publisher: John Wiley & Sons
ISBN: 1119037077
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications. Provides an overview of existing challenges, solutions and future trends. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.
Publisher: John Wiley & Sons
ISBN: 1119037077
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications. Provides an overview of existing challenges, solutions and future trends. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.
Impedance Source Inverters
Author: Hongpeng Liu
Publisher: Springer Nature
ISBN: 9811527636
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
Publisher: Springer Nature
ISBN: 9811527636
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
Impedance Source Inverters
Author: Hongpeng Liu
Publisher: Springer
ISBN: 9789811527654
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
Publisher: Springer
ISBN: 9789811527654
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
Advanced Multilevel Converters and Applications in Grid Integration
Author: Ali Iftekhar Maswood
Publisher: John Wiley & Sons
ISBN: 1119475864
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the core principles of advanced multilevel converters, which require fewer components and provide higher power conversion efficiency and output power quality. The authors – noted experts in the field – explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations Provides a valid reference for further developments in the multilevel converters design issue Contains simulations files for further study Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.
Publisher: John Wiley & Sons
ISBN: 1119475864
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the core principles of advanced multilevel converters, which require fewer components and provide higher power conversion efficiency and output power quality. The authors – noted experts in the field – explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations Provides a valid reference for further developments in the multilevel converters design issue Contains simulations files for further study Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.
Impedance Source Power Electronic Converters
Author: Yushan Liu
Publisher: John Wiley & Sons
ISBN: 1119037115
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications. Provides an overview of existing challenges, solutions and future trends. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.
Publisher: John Wiley & Sons
ISBN: 1119037115
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications. Provides an overview of existing challenges, solutions and future trends. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.
Advanced DC/AC Inverters
Author: Fang Lin Luo
Publisher: CRC Press
ISBN: 1466511389
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.
Publisher: CRC Press
ISBN: 1466511389
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.
Control of Power Inverters in Renewable Energy and Smart Grid Integration
Author: Qing-Chang Zhong
Publisher: John Wiley & Sons
ISBN: 1118481798
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Integrating renewable energy and other distributed energy sources into smart grids, often via power inverters, is arguably the largest “new frontier” for smart grid advancements. Inverters should be controlled properly so that their integration does not jeopardize the stability and performance of power systems and a solid technical backbone is formed to facilitate other functions and services of smart grids. This unique reference offers systematic treatment of important control problems in power inverters, and different general converter theories. Starting at a basic level, it presents conventional power conversion methodologies and then ‘non-conventional’ methods, with a highly accessible summary of the latest developments in power inverters as well as insight into the grid connection of renewable power. Consisting of four parts – Power Quality Control, Neutral Line Provision, Power Flow Control, and Synchronisation – this book fully demonstrates the integration of control and power electronics. Key features include: the fundamentals of power processing and hardware design innovative control strategies to systematically treat the control of power inverters extensive experimental results for most of the control strategies presented the pioneering work on “synchronverters” which has gained IET Highly Commended Innovation Award Engineers working on inverter design and those at power system utilities can learn how advanced control strategies could improve system performance and work in practice. The book is a useful reference for researchers who are interested in the area of control engineering, power electronics, renewable energy and distributed generation, smart grids, flexible AC transmission systems, and power systems for more-electric aircraft and all-electric ships. This is also a handy text for graduate students and university professors in the areas of electrical power engineering, advanced control engineering, power electronics, renewable energy and smart grid integration.
Publisher: John Wiley & Sons
ISBN: 1118481798
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Integrating renewable energy and other distributed energy sources into smart grids, often via power inverters, is arguably the largest “new frontier” for smart grid advancements. Inverters should be controlled properly so that their integration does not jeopardize the stability and performance of power systems and a solid technical backbone is formed to facilitate other functions and services of smart grids. This unique reference offers systematic treatment of important control problems in power inverters, and different general converter theories. Starting at a basic level, it presents conventional power conversion methodologies and then ‘non-conventional’ methods, with a highly accessible summary of the latest developments in power inverters as well as insight into the grid connection of renewable power. Consisting of four parts – Power Quality Control, Neutral Line Provision, Power Flow Control, and Synchronisation – this book fully demonstrates the integration of control and power electronics. Key features include: the fundamentals of power processing and hardware design innovative control strategies to systematically treat the control of power inverters extensive experimental results for most of the control strategies presented the pioneering work on “synchronverters” which has gained IET Highly Commended Innovation Award Engineers working on inverter design and those at power system utilities can learn how advanced control strategies could improve system performance and work in practice. The book is a useful reference for researchers who are interested in the area of control engineering, power electronics, renewable energy and distributed generation, smart grids, flexible AC transmission systems, and power systems for more-electric aircraft and all-electric ships. This is also a handy text for graduate students and university professors in the areas of electrical power engineering, advanced control engineering, power electronics, renewable energy and smart grid integration.
Introduction to Modern Power Electronics
Author: Andrzej M. Trzynadlowski
Publisher: John Wiley & Sons
ISBN: 1119003229
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.
Publisher: John Wiley & Sons
ISBN: 1119003229
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.
Multilevel Inverters
Author: Ersan Kabalci
Publisher: Academic Press
ISBN: 0128232390
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers. Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies Assesses how to systematically deploy and control multilevel power inverters in application scenarios Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators
Publisher: Academic Press
ISBN: 0128232390
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers. Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies Assesses how to systematically deploy and control multilevel power inverters in application scenarios Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators
Designing Impedance Networks Converters
Author: Guidong Zhang
Publisher: Springer
ISBN: 3319636553
Category : Technology & Engineering
Languages : en
Pages : 129
Book Description
Research and application of impedance network converters are very popular in recent years, but it still lacks of understanding of and guidelines of impedance networks application, therefore, there is quiet a large potential market about impedance networks converters. This book can serve as a teaching material for graduates and guidelines for engineers as designing an impedance source converter. The main purpose of this book is to understand impedance networks of nonlinear switch circuits and impedance networks matching, which will further put forward understanding of all power converters in view of impedance networks. Taking the impedance network matchings into account leads to a set of criteria for designing an impedance source converter, which is to replace the traditional tedious, manual and experience-dependent design methods.
Publisher: Springer
ISBN: 3319636553
Category : Technology & Engineering
Languages : en
Pages : 129
Book Description
Research and application of impedance network converters are very popular in recent years, but it still lacks of understanding of and guidelines of impedance networks application, therefore, there is quiet a large potential market about impedance networks converters. This book can serve as a teaching material for graduates and guidelines for engineers as designing an impedance source converter. The main purpose of this book is to understand impedance networks of nonlinear switch circuits and impedance networks matching, which will further put forward understanding of all power converters in view of impedance networks. Taking the impedance network matchings into account leads to a set of criteria for designing an impedance source converter, which is to replace the traditional tedious, manual and experience-dependent design methods.