Impact of Ion Implantation on Quantum Dot Heterostructures and Devices

Impact of Ion Implantation on Quantum Dot Heterostructures and Devices PDF Author: Arjun Mandal
Publisher: Springer
ISBN: 9811043345
Category : Technology & Engineering
Languages : en
Pages : 84

Get Book Here

Book Description
This book looks at the effects of ion implantation as an effective post-growth technique to improve the material properties, and ultimately, the device performance of In(Ga)As/GaAs quantum dot (QD) heterostructures. Over the past two decades, In(Ga)As/GaAs-based QD heterostructures have marked their superiority, particularly for application in lasers and photodetectors. Several in-situ and ex-situ techniques that improve material quality and device performance have already been reported. These techniques are necessary to maintain dot density and dot size uniformity in QD heterostructures and also to improve the material quality of heterostructures by removing defects from the system. While rapid thermal annealing, pulsed laser annealing and the hydrogen passivation technique have been popular as post-growth methods, ion implantation had not been explored largely as a post-growth method for improving the material properties of In(Ga)As/GaAs QD heterostructures. This work attempts to remedy this gap in the literature. The work also looks at introduction of a capping layer of quaternary alloy InAlGaAs over these In(Ga)As/GaAs QDs to achieve better QD characteristics. The contents of this volume will prove useful to researchers and professionals involved in the study of QDs and QD-based devices.

Impact of Ion Implantation on Quantum Dot Heterostructures and Devices

Impact of Ion Implantation on Quantum Dot Heterostructures and Devices PDF Author: Arjun Mandal
Publisher: Springer
ISBN: 9811043345
Category : Technology & Engineering
Languages : en
Pages : 84

Get Book Here

Book Description
This book looks at the effects of ion implantation as an effective post-growth technique to improve the material properties, and ultimately, the device performance of In(Ga)As/GaAs quantum dot (QD) heterostructures. Over the past two decades, In(Ga)As/GaAs-based QD heterostructures have marked their superiority, particularly for application in lasers and photodetectors. Several in-situ and ex-situ techniques that improve material quality and device performance have already been reported. These techniques are necessary to maintain dot density and dot size uniformity in QD heterostructures and also to improve the material quality of heterostructures by removing defects from the system. While rapid thermal annealing, pulsed laser annealing and the hydrogen passivation technique have been popular as post-growth methods, ion implantation had not been explored largely as a post-growth method for improving the material properties of In(Ga)As/GaAs QD heterostructures. This work attempts to remedy this gap in the literature. The work also looks at introduction of a capping layer of quaternary alloy InAlGaAs over these In(Ga)As/GaAs QDs to achieve better QD characteristics. The contents of this volume will prove useful to researchers and professionals involved in the study of QDs and QD-based devices.

Micro- and Nanotechnologies-Based Product Development

Micro- and Nanotechnologies-Based Product Development PDF Author: Neelesh Kumar Mehra
Publisher: CRC Press
ISBN: 1000422356
Category : Technology & Engineering
Languages : en
Pages : 582

Get Book Here

Book Description
This book provides comprehensive information of the nanotechnology-based pharmaceutical product development including a diverse range of arenas such as liposomes, nanoparticles, fullerenes, hydrogels, thermally responsive externally activated theranostics (TREAT), hydrogels, microspheres, micro- and nanoemulsions and carbon nanomaterials. It covers the micro- and nanotechnological aspects for pharmaceutical product development with the product development point of view and also covers the industrial aspects, novel technologies, stability studies, validation, safety and toxicity profiles, regulatory perspectives, scale-up technologies and fundamental concept in the development of products. Salient Features: Covers micro- and nanotechnology approaches with current trends with safety and efficacy in product development. Presents an overview of the recent progress of stability testing, reverse engineering, validation and regulatory perspectives as per regulatory requirements. Provides a comprehensive overview of the latest research related to micro- and nanotechnologies including designing, optimisation, validation and scale-up of micro- and nanotechnologies. Is edited by two well-known researchers by contribution of vivid chapters from renowned scientists across the globe in the field of pharmaceutical sciences. Dr. Neelesh Kumar Mehra is working as an Assistant Professor of Pharmaceutics & Biopharmaceutics at the Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, India. He received ‘TEAM AWARD’ for successful commercialisation of an ophthalmic suspension product. He has authored more than 60 peer-reviewed publications in highly reputed international journals and more than 10 book chapter contributions. He has filed patents on manufacturing process and composition to improved therapeutic efficacy for topical delivery. He guided PhD and MS students for their dissertations/research projects. He has received numerous outstanding awards including Young Scientist Award and Team Award for his research output. He recently published one edited book, ‘Dendrimers in Nanomedicine: Concept, Theory and Regulatory Perspectives’, in CRC Press. Currently, he is editing books on nano drug delivery-based products with Elsevier Pvt Ltd. He has rich research and teaching experience in the formulation and development of complex, innovative ophthalmic and injectable biopharmaceutical products including micro- and nanotechnologies for regulated market. Dr. Arvind Gulbake is working as an Assistant Professor at the Faculty of Pharmacy, School of Pharmaceutical & Population Health Informatics, at DIT University, Dehradun, India. He has authored more than 40 peer-reviewed publications in highly reputed international journals, four book chapters and a patent contribution. He has received outstanding awards including Young Scientist Award and BRG Travel Award for his research. He is an assistant editor for IJAP. He guided PhD and MS students for their dissertations/research projects. He has successfully completed extramural project funded by SERB, New Delhi, Government of India. He has more than 12 years of research and teaching experience in the formulation and development of nanopharmaceuticals.

Fabrication and Measurement of Devices in Si/SiGe Nanomembranes

Fabrication and Measurement of Devices in Si/SiGe Nanomembranes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Get Book Here

Book Description
Silicon/silicon-germanium (Si/SiGe) heterostructures are useful as hosts for gated quantum dots. The quality of the as-grown Si/SiGe heterostructure has a large impact on the final quality of the quantum dot as a qubit host. For many years, quantum dots have been fab- ricated on strain-graded heterostructures. Commonly used strain-graded heterostructures inevitably develop plastic defects that lead to interface roughness, crosshatch, and mosaic tilt. All of these factors are sources of disorder in Si/SiGe quantum electronics. In this dissertation, I report the fabrication of Hall bars and gated quantum dots on heterostruc- tures grown on fully elastically relaxed SiGe nanomembranes, rather than strain-graded heterostructures. I report measurements of Hall bars demonstrating the creation of two- dimensional electron gases in these structures. I report the fabrication procedures used to create pairs of Hall bars and quantum dots on individual membranes. In addition, I explain a general process flow for the creation of Si/SiGe quantum devices. I focus especially on an ion-implantation technique I implemented for the fabrication of Hall bars and quantum dots in Si/SiGe heterostructures without modulation doping layers.

Ion Implantation: Basics to Device Fabrication

Ion Implantation: Basics to Device Fabrication PDF Author: Emanuele Rimini
Publisher: Springer Science & Business Media
ISBN: 9780792395201
Category : Technology & Engineering
Languages : en
Pages : 418

Get Book Here

Book Description
Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject.

Self-Assembled InGaAs/GaAs Quantum Dots

Self-Assembled InGaAs/GaAs Quantum Dots PDF Author:
Publisher: Academic Press
ISBN: 0080864589
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
This volume is concerned with the crystal growth, optical properties, and optical device application of the self-formed quantum dot, which is one of the major current subjects in the semiconductor research field.The atom-like density of states in quantum dots is expected to drastically improve semiconductor laser performance, and to develop new optical devices. However, since the first theoretical prediction for its great possibilities was presented in 1982, due to the difficulty of their fabrication process. Recently, the advent of self-organized quantum dots has made it possible to apply the results in important optical devices, and further progress is expected in the near future.The authors, working for Fujitsu Laboratories, are leading this quantum-dot research field. In this volume, they describe the state of the art in the entire field, with particular emphasis on practical applications.

Quantum Dot Heterostructures

Quantum Dot Heterostructures PDF Author: Dieter Bimberg
Publisher: John Wiley & Sons
ISBN: 9780471973881
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)

Heterostructures and Quantum Devices

Heterostructures and Quantum Devices PDF Author: Norman G. Einspruch
Publisher: Elsevier
ISBN: 1483295176
Category : Technology & Engineering
Languages : en
Pages : 465

Get Book Here

Book Description
Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical engineering devices. The text covers existing technologies and future possibilities within a common framework of high-performance devices, which will have a more immediate impact on advanced semiconductor physics-particularly quantum effects-and will thus form the basis for longer-term technology development.

Semiconductor Physical Electronics

Semiconductor Physical Electronics PDF Author: Sheng S. Li
Publisher: Springer Science & Business Media
ISBN: 0387377662
Category : Science
Languages : en
Pages : 708

Get Book Here

Book Description
The updated edition of this book provides comprehensive coverage of fundamental semiconductor physics. This subject is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. It has been revised to reflect advances in semiconductor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace.

Influence of Quantum Dot Structure on the Optical Properties of Group IV Materials Fabricated by Ion Implantation

Influence of Quantum Dot Structure on the Optical Properties of Group IV Materials Fabricated by Ion Implantation PDF Author: Eric G. Barbagiovanni
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In nanostructures (NSs), to acquire a fundamental understanding of the electronic states by studying the optical properties is inherently complicated. A widely used simplification to this problem comes about by developing a model for a small scale representation of types of NSs and applying it to a hierarchy of fabrication methods. However, this methodology fails to account for structural differences incurred by the fabrication method that lead to differences in the optical properties. Proper modelling is realized by first considering the proper range of experimental parameters individually as inputs to a theoretical model and applying the correct parameters to the corresponding fabrication method. This thesis studies the connection between the structural and optical properties of NSs as a function of the fabrication method, using, principally, x-ray photoemission, Rutherford backscattering, photoluminesence, and Raman spectroscopy. Ion implanted Si and Ge quantum dots (QDs) in dielectric matrix were prepared to study the optical and structural properties, and compared against several other preparation methods. Ge QDs are known to exhibit a high concentration of defect states. The cause of these states was studied for QDs in a sapphire matrix and attributed to diffusion and desorption of Ge during annealing. Optical studies of Si QDs fabricated using an implantation mask revealed that state-filling and excitation transfer are important parameters in densely packed QD arrays. Structural analysis of Si QDs in silica revealed a well defined interface composed of Si$_2$O$_3$ and no stress was detected. Furthermore, the valence level was pinned at its bulk position possibly due to interface states. This information was used to refine our theoretical model of QDs and then compared with a range of crystalline and amorphous Si and Ge NSs. Stronger confinement effects were observed in amorphous Si and Ge NSs, possibly due to the nature of the interface or re-normalization of the effective mass as a function of NS size. These results establish a framework for proper parameter control in theoretical modelling.

Radiation Effects in Advanced Semiconductor Materials and Devices

Radiation Effects in Advanced Semiconductor Materials and Devices PDF Author: C. Claeys
Publisher: Springer Science & Business Media
ISBN: 3662049740
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.