Author: 国立国会図書館(Japan)
Publisher:
ISBN:
Category : Libraries
Languages : en
Pages : 1068
Book Description
洋書速報
The Impact of Academic Research on Industrial Performance
Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309089735
Category : Political Science
Languages : en
Pages : 265
Book Description
Drawing on the findings of sector-specific workshops, e-mail surveys, research literature, expert testimony, and committee and panel members' expertise, this National Academy of Engineering study assesses the qualitative impact of academic research on five industriesâ€"network systems and communications; medical devices and equipment; aerospace; transportation, distribution, and logistics services; and financial services. The book documents the range and significance of academic research contributions to the five industriesâ€"comparing the importance of different types of contributions, the multi- and interdisciplinary nature of these contributions, and the multiple vectors by which academic research is linked to each industry. The book calls for action to address six cross-cutting challenges to university-industry interactions: the growing disciplinary and time-horizon-related imbalances in federal R&D funding, barriers to university-industry interaction in service industries, the critical role of academic research in the advancement of information technology, the role of academic research in the regulation of industry, the impact of technology transfer activities on core university research and education missions, and the search for new pathways and mechanisms to enhance the contributions of academic research to industry. The book also includes findings and recommendations specific to each industry.
Publisher: National Academies Press
ISBN: 0309089735
Category : Political Science
Languages : en
Pages : 265
Book Description
Drawing on the findings of sector-specific workshops, e-mail surveys, research literature, expert testimony, and committee and panel members' expertise, this National Academy of Engineering study assesses the qualitative impact of academic research on five industriesâ€"network systems and communications; medical devices and equipment; aerospace; transportation, distribution, and logistics services; and financial services. The book documents the range and significance of academic research contributions to the five industriesâ€"comparing the importance of different types of contributions, the multi- and interdisciplinary nature of these contributions, and the multiple vectors by which academic research is linked to each industry. The book calls for action to address six cross-cutting challenges to university-industry interactions: the growing disciplinary and time-horizon-related imbalances in federal R&D funding, barriers to university-industry interaction in service industries, the critical role of academic research in the advancement of information technology, the role of academic research in the regulation of industry, the impact of technology transfer activities on core university research and education missions, and the search for new pathways and mechanisms to enhance the contributions of academic research to industry. The book also includes findings and recommendations specific to each industry.
NASA EP.
Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 152
Book Description
1980 National Science Foundation Authorization
Author: United States. Congress. House. Committee on Science and Technology. Subcommittee on Science, Research, and Technology
Publisher:
ISBN:
Category :
Languages : en
Pages : 834
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 834
Book Description
Social Sciences and Space Exploration
Author:
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 152
Book Description
Research in Education
Author:
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 1006
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 1006
Book Description
The Future of Nursing
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309208955
Category : Medical
Languages : en
Pages : 700
Book Description
The Future of Nursing explores how nurses' roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in America's increasingly complex health system. At more than 3 million in number, nurses make up the single largest segment of the health care work force. They also spend the greatest amount of time in delivering patient care as a profession. Nurses therefore have valuable insights and unique abilities to contribute as partners with other health care professionals in improving the quality and safety of care as envisioned in the Affordable Care Act (ACA) enacted this year. Nurses should be fully engaged with other health professionals and assume leadership roles in redesigning care in the United States. To ensure its members are well-prepared, the profession should institute residency training for nurses, increase the percentage of nurses who attain a bachelor's degree to 80 percent by 2020, and double the number who pursue doctorates. Furthermore, regulatory and institutional obstacles-including limits on nurses' scope of practice-should be removed so that the health system can reap the full benefit of nurses' training, skills, and knowledge in patient care. In this book, the Institute of Medicine makes recommendations for an action-oriented blueprint for the future of nursing.
Publisher: National Academies Press
ISBN: 0309208955
Category : Medical
Languages : en
Pages : 700
Book Description
The Future of Nursing explores how nurses' roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in America's increasingly complex health system. At more than 3 million in number, nurses make up the single largest segment of the health care work force. They also spend the greatest amount of time in delivering patient care as a profession. Nurses therefore have valuable insights and unique abilities to contribute as partners with other health care professionals in improving the quality and safety of care as envisioned in the Affordable Care Act (ACA) enacted this year. Nurses should be fully engaged with other health professionals and assume leadership roles in redesigning care in the United States. To ensure its members are well-prepared, the profession should institute residency training for nurses, increase the percentage of nurses who attain a bachelor's degree to 80 percent by 2020, and double the number who pursue doctorates. Furthermore, regulatory and institutional obstacles-including limits on nurses' scope of practice-should be removed so that the health system can reap the full benefit of nurses' training, skills, and knowledge in patient care. In this book, the Institute of Medicine makes recommendations for an action-oriented blueprint for the future of nursing.
Strengthening Forensic Science in the United States
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309142393
Category : Law
Languages : en
Pages : 348
Book Description
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
Publisher: National Academies Press
ISBN: 0309142393
Category : Law
Languages : en
Pages : 348
Book Description
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
Resources in Education
Author:
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 760
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 760
Book Description
Science, Technology, Engineering, and Mathematics (Stem) Education
Author: Heather B. Gonzalez
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.